Author: Labat, M.
Paper Title Page
TUP086 Experiment Preparation Towards a Demonstration of Laser Plasma Based Free Electron Laser Amplification 569
  • M.-E. Couprie, C. Benabderrahmane, P. Berteaud, C. Bourassin-Bouchet, F. Bouvet, F. Briquez, L. Cassinari, L. Chapuis, M.E. El Ajjouri, C. Herbeaux, N. Hubert, M. Labat, A. Lestrade, A. Loulergue, J. Lüning, O. Marcouillé, J.L. Marlats, F. Marteau, C. Miron, P. Morin, F. Polack, K. Tavakoli, M. Valléau, D. Zerbib
    SOLEIL, Gif-sur-Yvette, France
  • I.A. Andriyash, G. Lambert, V. Malka, C. Thaury
    LOA, Palaiseau, France
  • S. Bielawski, C. Evain, C. Szwaj
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • X. Davoine
    CEA/DAM/DIF, Arpajon, France
  One direction towards compact Free Electron Laser is to replace the conventional linac by a laser plasma driven beam, provided proper electron beam manipulation to handle the value of the energy spread and of the divergence. Applying seeding techniques also enables to reduce the required undulator length. Rapidly developing Laser Wakefield Accelerators (LWFA) are already able to generate synchrotron radiation. With the presently achieved electron divergence and energy spread an adequate beam manipulation through the transport to the undulator is needed for FEL amplification. A test experiment for the demonstration of FEL amplification with a LWFA is under preparation in the frame of the COXINEL ERC contract in the more general context of LUNEX5. Electron beam transport follows different steps with strong focusing thanks to variable strength permanent magnet quadrupoles, demixing chicane with conventional dipoles, and a second set of quadrupoles for further focusing in the undulator. Progress on the equipment preparation and expected performance are described.  
TUP087 The Status of LUNEX5 Project 574
  • M.-E. Couprie, C. Benabderrahmane, P. Berteaud, C. Bourassin-Bouchet, F. Bouvet, F. Briquez, L. Cassinari, L. Chapuis, J. Daillant, M. Diop, M.E. El Ajjouri, C. Herbeaux, N. Hubert, M. Labat, P. Lebasque, A. Lestrade, A. Loulergue, P. Marchand, O. Marcouillé, J.L. Marlats, C. Miron, P. Morin, A. Nadji, F. Polack, F. Ribeiro, J.P. Ricaud, P. Roy, K. Tavakoli, M. Valléau, D. Zerbib
    SOLEIL, Gif-sur-Yvette, France
  • S. Bielawski
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • B. Carré, D. Garzella
    CEA/DSM/DRECAM/SPAM, Gif-sur-Yvette, France
  • X. Davoine
    CEA/DAM/DIF, Arpajon, France
  • N. Delerue
    LAL, Orsay, France
  • G. Devanz, A. Mosnier
    CEA/DSM/IRFU, France
  • A. Dubois, J. Lüning
    CCPMR, Paris, France
  • C. Evain, E. Roussel, C. Szwaj
    PhLAM/CERLA, Villeneuve d'Ascq, France
  • G. Lambert, R. Lehé, V. Malka, A. Rousse, C. Thaury
    LOA, Palaiseau, France
  • C. Madec
    CEA/IRFU, Gif-sur-Yvette, France
  LUNEX5 (free electron Laser Using a New accelerator for the Exploitation of X-ray radiation of 5th generation) aims at investigating the production of short, intense, coherent Free Electron Laser (FEL) pulses in the 40-4 nm spectral range. It comprises a 400 MeV superconducting Linear Accelerator for high repetition rate operation (10 kHz), multi-FEL lines and adapted for studies of advanced FEL schemes, a 0.4 - 1 GeV Laser Wake Field Accelerator (LWFA) for its qualification by a FEL application, a single undulator line enabling seeding with High order Harmonic in Gas and echo configurations and pilot user applications. Concerning the superconducting linac, the electron beam dynamics has been modified from a scheme using a third harmonic linearizer and a compression chicane to dog-leg coupled to sextupoles. Besides, the choice of the gun is under revision for fulfilling to 10 kHz repetition rate. Following transport theoretical studies of longitudinal and transverse manipulation of a LWFA electron beam enabling to provide theoretical amplification, a test experiment is under preparation in collaboration with the Laboratoire d’Optique Appliquée towards an experimental demonstration.  
Beam Manipulation for Plasma Accelerator Based Free Electron Lasers  
  • A. Loulergue, C. Benabderrahmane, M.-E. Couprie, M. Labat
    SOLEIL, Gif-sur-Yvette, France
  • C. Evain
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • V. Malka
    LOA, Palaiseau, France
  Longitudinal decompression of electron beams delivered by state-of-the-art Laser WakeField Accelerators (LWFA) eases the free-electron laser process. We propose here an additional second order transverse beam manipulation, only based on quadrupoles, turning the very large inherent transverse chromatic emittances of LWFA beam into direct FEL gain advantage. This complete transfer line scheme is presently under construction for the projects COXINEL recently funded by an ERC advanced grant. Numerical simulations showing that this beam manipulation can further enhance by orders of magnitude the peak power of the radiation are presented.  
A High Repetition Rate, Single-Shot Recording Scheme for Short Pulses  
  • E. Roussel, S. Bielawski, C. Evain, M. Le Parquier, C. Szwaj
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • J.B. Brubach, L. Cassinari, M.-E. Couprie, M. Labat, L. Manceron, J.P. Ricaud, P. Roy, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
  We demonstrate high repetition rate (up to 88 MHz) single shot recordings of pulses shapes, using a novel opto-electronic strategy. The technique is based on the classical spectral encoding technique, but at a much higher repetition rate than with the state-of-art strategy (which is limited by camera speed). In the present demonstration, the signals are coherent THz pulses emitted at SOLEIL, and the resolution is in the ps range. However the technique is not specific to THz pulses and can be potentially adapted to other wavelengths and situations, provided it is possible to imprint the ultrafast signal on chirped laser pulses (through electro-optic sampling, frequency mixing, transient reflectivity, etc.).  
THP087 Electron Beam Diagnostics for COXINEL 937
  • M. Labat, C. Bourassin-Bouchet, L. Cassinari, M.-E. Couprie, M.E. El Ajjouri, N. Hubert, A. Loulergue
    SOLEIL, Gif-sur-Yvette, France
  On the path towards more compact free electron lasers (FELs), the project COXINEL was recently funded: a transfer line will be installed to adapt a plasma accelerated beam (from LOA) into an in-vacuum undulator built by SOLEIL. This experiment should enable to demonstrate the first FEL based on a plasma accelerator. Because plasma beams are intrinsically very different from RF acceletor beams (much shorter, divergent and smaller with a higher energy spread and energy jitter), their transport and matching in the undulator is critical if willing to obtain a significant amplification. This is why special care has to be taken in the design of the beam diagnostics to be able to measure the transverse beam sizes, energy spread and jitter, emittance and bunch length. For these purposes, several diagnostics will be implemented from the plasma accelerator exit down to the undulator exit. In each station, several screen types will be available and associated to high resolution imaging screens. In this paper, we present the experimental layout and associated simulation of the diagnostics performances.