Author: Fisher, A.S.
Paper Title Page
THB04 Electron Beam Diagnostics and Feedback for the LCLS-II 666
  • J.C. Frisch, P. Emma, A.S. Fisher, P. Krejcik, H. Loos, T.J. Maxwell, T.O. Raubenheimer, S.R. Smith
    SLAC, Menlo Park, California, USA
  Funding: work supported by DOE contract DE-AC02-76-SF00515
The LCLSII is a CW superconducting accelerator driven, hard and soft X-ray Free Electron Laser which is planned to be constructed at SLAC. It will operate with a variety of beam modes from single shot to approximately 1 MHz CW at bunch charges from 10pc to 300pC with average beam powers up to 1.2 MW. A variety of types of beam instrumentation will be used, including stripline and cavity BPMS, fluorescent and OTR based beam profile monitors, fast wire scanners and transverse deflection cavities. The beam diagnostics system is designed to allow tuning and continuous measurement of beam parameters, and to provide signals for fast beam feedbacks.
slides icon Slides THB04 [1.501 MB]  
Towards a Novel THz-based Monitor for Subpicosecond Electron Bunches Working at MHz Repetition Rates and Low Bunch Charges  
  • B.W. Green, M. Gensch, S. Kovalev
    HZDR, Dresden, Germany
  • A.S. Fisher
    SLAC, Menlo Park, California, USA
  • T. Golz, N. Stojanovic
    DESY, Hamburg, Germany
  • M. Kuntzsch
    TU Dresden, Dresden, Germany
  The control and measurement of electron bunch properties at the femtosecond (fs) level has become an important field in modern accelerator physics, in particular since these became crucial parameters for the operation of 4th Generation X-ray Light-sources. In order to operate modern-day photon factories such as LCLS and the future European X-FEL reliably, a number of novel approaches have been developed that allow the noninvasive measurement of electron bunch form and arrival time. Some of those are based on the electro-optic detection of the coulomb field of the electron bunches in the electron beamline; some detect the super-radiant THz pulses from the electron bunch. However, none of these concepts allows for pulse-to-pulse detection on a quasi-CW accelerator operating at the MHz repetition rates planned for the next generation of X-ray free electron lasers. In this contribution we present first results from a new monitor concept, based on the single-shot electro-optic detection of super-radiant THz pulses, that has the potential to operate at MHz repetition rates.  
poster icon Poster THP065 [1.966 MB]