FEL Technology II: Timing, Stability, Optics
Paper Title Page
TUIANO01
Seed Laser Configurations for Advanced Pump-probe Schemes With FELs  
 
  • M.B. Danailov, P. Cinquegrana, A.A. Demidovich, R. Ivanov, G. Kurdi, I. Nikolov, P. Sigalotti
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  This work presents novel techniques developed and under development at the FERMI FEL for implementing new modalities of FEL operation allowing pump-probe experiments with practically no jitter between the pump and probe pulses. One of the proposed techniques takes advantage of the fact that in seeded FELs the exact time at which FEL pulses are generated is locked to the one of the seed laser, and uses a part of the seed laser light for pump-probe experiments. We are presenting the design of a scheme implementing this idea at the FERMI FEL. We address the design of the optical beam transport as well as of the high performance feedbacks driven by optically derived error signals needed to cancel the temporal and pointing drifts. Another new technique, described for the first time to our knowledge, is the use of a double-pulse seed laser which seeds the same electron bunch and allows to generate two FEL pulses with tunable time delay and wavelengths. First experimental results are presented.  
 
TUOANO01
Towards High Energy and Timing Stability in SCRF Linacs  
 
  • J.M. Byrd, L.R. Doolittle, G. Huang, M. Mellado, J.A.G. Olivieri, S. Paret, A. Ratti, C. Serrano
    LBNL, Berkeley, California, USA
  • C.H. Rivetta
    SLAC, Menlo Park, California, USA
 
  One of the concepts for the next generation of linac-driven FELs is a CW superconducting linac driving an electron beam with MHz repetition rates. One of the challenges for next generation FELs is improve the stability of the x-ray pulses by improving the shot-to-shot stability of the energy, charge, peak current, and timing jitter of the electron beam. A high repetition rate FEL with a CW linac presents an opportunity to use a variety of broadband feedbacks to stabilize the beam parameters. We present results on using this model to understand and predict the potential stability of such a machine. We also describe how we are implementing an SVD approach for broadband beam-based feedback to improve stability.  
slides icon Slides TUOANO01 [9.439 MB]  
 
TUOANO02 Long-term Stable, Large-scale, Optical Timing Distribution Systems With Sub-femtosecond Timing Stability 156
 
  • M.Y. Peng, P.T. Callahan, F.X. Kaertner, A.H. Nejadmalayeri
    MIT, Cambridge, Massachusetts, USA
  • K. Ahmed, S. Valente, M. Xin
    DESY, Hamburg, Germany
  • P. Battle, T.D. Roberts
    AdvR, Inc., Montana, USA
  • J.M. Fini, L. Grüner-Nielsen, E. Monberg, M. Yan
    OFS Laboratories, New Jersey, USA
  • F.X. Kaertner
    CFEL, Hamburg, Germany
 
  Funding: US Department of Energy Contract DE-SC0005262 and Center for Free-Electron Laser Science, DESY, Hamburg
Sub-fs X-ray pulse generation in kilometer-scale FEL facilities will require sub-fs long-term timing stability between optical sources over kilometer distances. We present here key developments towards a completely fiber-coupled, sub-fs optical timing distribution system. Our approach [*] is to lock a femtosecond pulsed laser to a microwave reference and distribute its pulse train through fiber links stabilized by balanced optical cross-correlators (BOCs) [**]. First, we verified that low-noise optical master oscillators for sub-fs timing distribution are available today; the measured jitter for two commercial femtosecond lasers is less than 70 as for frequencies above 1 kHz. Second, we developed a novel 1.2 km dispersion-compensated, polarization-maintaining fiber link to eliminate drifts induced by polarization mode dispersion. Link stabilization for 16 days showed 0.6 fs RMS timing drift and during a 3-day interval only 0.13 fs drift. Lastly, we fabricated a hybrid-integrated BOC using PPKTP waveguides [***] to eliminate alignment drifts and to reduce the link operation power by a factor of 10-100, which will reduce timing errors induced by fiber nonlinearities.
* J. Kim et al., Nat. Photon., 2, 12, 733–736, 2008.
** J. Kim et al., Opt. Lett., 32, 9, 1044–1046, 2007.
*** A. H. Nejadmalayeri et al., Opt. Lett., 34, 16, 2522–2524, 2009.
 
slides icon Slides TUOANO02 [1.387 MB]  
 
TUOANO03
Bunch Profile Measurement of the LCLS Electron Beam via Mid-IR Spectroscopy  
 
  • T.J. Maxwell, Y. Ding, A.S. Fisher, J.C. Frisch, H. Loos
    SLAC, Menlo Park, California, USA
  • C. Behrens
    DESY, Hamburg, Germany
 
  Funding: Work supported by US Department of Energy contract number DE-AC02-76SF00515.
For the generation of ultrashort x-ray FEL pulses, a similarly short, high-brightness electron beam is needed with compression tuned to the extent that a narrow energy spread can still be preserved. Further reduction of the nominal LCLS bunch length by lowering the bunch charge or employing an upstream, emittance-spoiling foil promises to reduce the pulse duration to the level of only a few femtoseconds, presenting a challenge to the temporal resolution of existing longitudinal diagnostics. In answer to this, we have recently commissioned a single-shot, middle-infrared spectrometer for the LCLS. Developed as a robust and cost-effective alternative to other femtosecond-scale beam diagnostics, coherent mid-IR beam radiation measurements and analysis are then employed to probe the LCLS beam just prior to the undulator. Results resolving beam structure to the few-fs level for 20 - 150 pC beams will be presented. Practical design challenges and diagnostic limitations will also be discussed.
 
slides icon Slides TUOANO03 [2.337 MB]  
 
TUOANO04 PITZ Experience on the Experimental Optimization of the RF Photo Injector for the European XFEL 160
 
  • M. Krasilnikov, H.-J. Grabosch, M. Groß, L. Hakobyan, I.I. Isaev, L. Jachmann, M. Khojoyan, W. Köhler, M. Mahgoub, D. Malyutin, A. Oppelt, M. Otevřel, B. Petrosyan, A. Shapovalov, F. Stephan, G. Vashchenko, S. Weidinger, R.W. Wenndorff
    DESY Zeuthen, Zeuthen, Germany
  • G. Asova
    INRNE, Sofia, Bulgaria
  • K. Flöttmann, M. Hoffmann, G. Klemz, S. Lederer, H. Schlarb, S. Schreiber
    DESY, Hamburg, Germany
  • Ye. Ivanisenko
    PSI, Villigen PSI, Switzerland
  • M.A. Nozdrin
    JINR, Dubna, Moscow Region, Russia
  • V.V. Paramonov
    RAS/INR, Moscow, Russia
  • D. Richter
    HZB, Berlin, Germany
  • S. Rimjaem
    Chiang Mai University, Chiang Mai, Thailand
  • I.H. Templin, I. Will
    MBI, Berlin, Germany
 
  The Photo Injector Test facility at DESY, Zeuthen site (PITZ), develops high brightness electron sources for modern free electron lasers. A continuous experimental optimization of the L-band photo injector for such FEL facilities like FLASH and the European XFEL has been performed for a wide range of electron bunch charges – from 20 pC to 2 nC – yielding very small emittance values for all charge levels. Experience and results of the experimental optimization will be presented in comparison with beam dynamics simulations. The influence of various parameters onto the photo injector performance will be discussed.
Phys. Rev. ST Accel. Beams 15, 100701 (2012)
 
slides icon Slides TUOANO04 [3.126 MB]  
 
WEPSO10 Increased Stability Requirements for Seeded Beams at LCLS 518
 
  • F.-J. Decker, W.S. Colocho, Z. Huang, R.H. Iverson, A. Krasnykh, A.A. Lutman, M.N. Nguyen, T.O. Raubenheimer, M.C. Ross, J.L. Turner, L. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy, Contract DE-AC02-76SF00515.
Running the Linac Coherent Light Source (LCLS) with self-seeded photon beams requires better electron beam stability, especially in energy, to reduce the otherwise huge intensity variations of more than 100%. Code was written to identify and quantify the different jitter sources. Some improvements are being addressed, especially the stability of the modulator high voltage of some critical RF stations. Special setups like running the beam off crest in the last part of the linac can also be used to reduce the energy jitter. Even a slight dependence on the transverse position was observed. The intensity jitter distribution of a seeded beam is still more contained with peaks up too twice the average intensity, compared to the jitter distribution of a SASE beam going through a monochromator, which can have damaging spikes up to 5 times the average intensity.
 
 
WEPSO28 Fast Electron Beam and FEL Diagnostics at the ALICE IR-FEL at Daresbury Laboratory 557
 
  • F. Jackson, D. Angal-Kalinin, D.J. Dunning, J.K. Jones, A. Kalinin, T.T. Thakker, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • D. Angal-Kalinin, D.J. Dunning, J.K. Jones, N. Thompson
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The ALICE facility at Daresbury Laboratory is an energy recovery based infra-red free electron laser of the oscillator type that has been operational since 2010. Recently fast diagnostics have been installed to perform combined measurements on pulse-by pulse FEL pulse energy and bunch-by-bunch electron bunch position and arrival time. These measurements have highlighted and quantified fast instabilities in the electron beam and consequently the FEL output, and are presented and discussed here.  
 
WEPSO33 Remote RF Synchronization With Femtosecond Drift at PAL 570
 
  • J. Kim, K. Jung, J. Lim
    KAIST, Daejeon, Republic of Korea
  • L. Chen
    Idesta Quantum Electronics, New Jersey, USA
  • S. Hunziker
    PSI, Villigen PSI, Switzerland
  • F.X. Kaertner
    CFEL, Hamburg, Germany
  • H.-S. Kang, C.-K. Min
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: This research was supported by the PAL-XFEL Project, South Korea.
We present our recent progress in remote RF synchronization using an optical way at PAL. A 79.33-MHz, low-jitter fiber laser is used as an optical master oscillator (OMO), which is locked to the 2.856-GHz RF master oscillator (RMO) using a balanced optical-microwave phase detector (BOM-PD). The locked optical pulse train is then transferred via a timing-stabilized 610-m long optical fiber link. The output is locked to the 2.856 GHz voltage controlled oscillator (VCO) using the second BOM-PD, which results in remote synchronization between the RMO and the VCO. We measured the long-term phase drift between the input optical pulse train and the remote RF signals using an out-of-loop BOM-PD, which results in 2.7 fs (rms) drift maintained over 7 hours. We are currently working to measure the phase drift between the two RF signals and reduce the phase drift over longer measurement time.
 
 
WEPSO37 Femtosecond Fiber Timing Distribution System for the Linac Coherent Light Source 583
 
  • H. Li, P.H. Bucksbaum, J.C. Frisch, A.R. Fry, J. May, K. Muehlig, S.R. Smith
    SLAC, Menlo Park, California, USA
  • L. Chen, H.P.H. Cheng
    Idesta Quantum Electronics, New Jersey, USA
  • F.X. Kaertner
    CFEL, Hamburg, Germany
  • F.X. Kaertner
    MIT, Cambridge, Massachusetts, USA
  • A. Uttamadoss
    PU, Princeton, New Jersey, USA
 
  Funding: This work is supported by Department of Energy under STTR grant DE-C0004702.
We present the design and progress of a femtosecond fiber timing distribution system for the Linac Coherent Light Source (LCLS) at SLAC to enable the machine diagnostic at the 10 fs level. The LCLS at the SLAC is the world’s first hard x-ray free-electron laser (FEL) with unprecedented peak brightness and pulse duration. The time-resolved optical/x-ray pump-probe experiments on this facility open the era of exploring the ultrafast dynamics of atoms, molecules, proteins, and condensed matter. However, the temporal resolution of current experiments is limited by the time jitter between the optical and x-ray pulses. Recently, sub-25 fs rms jitter is achieved from an x-ray/optical cross-correlator at the LCLS, and external seeding is expected to reduce the intrinsic timing jitter, which would enable full synchronization of the optical and x-ray pulses with sub-10 fs precision. Of such a technique, synchronization between seed and pump lasers would be implemented. Preliminary test results of the major components for a 4 link system will be presented. Currently, the system is geared towards diagnostics to study the various sources of jitter at the LCLS.
*P. Emma et al.,Nat. Photonics 4,641-647(2010).
*J. Kim et al.,Opt. Lett,, 31,3659(2006).
*J. Kim et al.,Opt. Lett,, 32,1044(2007).
*J.Kim et al.,Nat. Photonics 2,733-736(2008).
 
 
WEPSO46 Study on the fluctuation of electron beam position in KU-FEL 602
 
  • K. Okumura, M. Inukai, T. Kii, T. Konstantin, K. Masuda, K. Mishima, H. Negm, H. Ohgaki, M. Omer, Y. Tsugamura, K. Yoshida, H. Zen
    Kyoto University, Institute for Advanced Energy, Kyoto, Japan
 
  Stability of electron beam is important for stable FEL operation. In Kyoto University MIR-FEL facility (KU-FEL), a BPM (Beam Position Monitor) system consisting of six 4-button electrode type BPMs was installed for monitoring of the electron beam position. The fluctuation of the electron beam position has been observed in horizontal and vertical directions. The origin of the beam position fluctuation is not clarified. In horizontal direction, the main fluctuation source is expected to be the energy fluctuation. As the one of candidate of the energy fluctuation, the cavity temperature of the RF gun has been suspected because the gun is operated in detuned condition [1] which enhances beam energy dependence on the cavity temperature. Another candidate is considered to be the fluctuation of the RF power fed to the gun. Therefore, we start to study the effect of the cavity temperature and the RF power on the position of electron beam. In this conference, we will present the measured result and numerical evaluation of the beam position dependence on temperature and RF power.
[1] H. Zen, et al, “Beam Energy Compensation in a Thermionic RF Gun by Cavity Detuning,” IEEE transaction on nuclear science, Vol.56, No. 3, Pages 1487-1491 (2009)