Author: Mahieu, B.
Paper Title Page
TUOA04
Coherence Properties of FERMI@Elettra  
 
  • B. Mahieu, E. Allaria, G. De Ninno, E. Ferrari, F. Parmigiani, L. Raimondi, S. Spampinati, C. Spezzani, C. Svetina, M. Zangrando
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • B. Mahieu
    CEA/DSM/DRECAM/SPAM, Gif-sur-Yvette, France
 
  We report the results of a campaign of measurements aimed at characterizing the spatial and temporal coherence of the FERMI@Elettra free-electron laser. The results (the first obtained on a high-gain seeded single-pass free-electron laser), are compared with those obtained on other (SASE-based) facilities.  
slides icon Slides TUOA04 [3.274 MB]  
 
MOOB06 First Lasing of FERMI FEL-2 (1° Stage) and FERMI FEL-1 Recent Results 13
 
  • L. Giannessi, E. Allaria, L. Badano, D. Castronovo, P. Cinquegrana, P. Craievich, G. D'Auria, M.B. Danailov, A.A. Demidovich, S. Di Mitri, B. Diviacco, W.M. Fawley, E. Ferrari, L. Fröhlich, G. Gaio, R. Ivanov, E. Karantzoulis, B. Mahieu, N. Mahne, I. Nikolov, G. Penco, L. Raimondi, C. Serpico, P. Sigalotti, S. Spampinati, C. Spezzani, M. Svandrlik, C. Svetina, M. Trovò, M. Veronese, D. Zangrando, M. Zangrando
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • G. De Ninno
    University of Nova Gorica, Nova Gorica, Slovenia
  • F. Parmigiani
    Università degli Studi di Trieste, Trieste, Italy
 
  The FERMI@Elettra seeded Free Electron Laser (FEL) is based on two complementary FEL lines, FEL-1 and FEL-2. FEL-1 is a single stage cascaded FEL delivering light in the 80-20nm wavelength range, while FEL-2 is a double stage cascaded FEL where the additional stage should extend the frequency up-conversion to the spectral range of 20-4nm. The FEL-1 beam line is in operation since the end of 2010, with user experiments carried on in 2011 and 2012. During 2012 the commissioning of the FEL-2 beam line has started and the first observation of coherent light from the first stage of the cascade has been demonstrated. In the meanwhile the commissioning of a number of key components of FERMI, as the laser heater, the X-Band cavity for the longitudinal phase space linearization and the high energy RF deflector has been completed. The additional control on the longitudinal phase space and a progressive improvement in the machine optics optimization had a significant impact of FEL-1 performances, which has reached the expected specifications. In addition, emission of radiation at very high order conversion factors (up to 29th) has been observed and double stage cascades have been preliminarily tested with the observation of coherent radiation in the water window, up to the 65th harmonic of the seed laser, at about 4 nm.  
slides icon Slides MOOB06 [6.633 MB]  
 
TUOB02 Spectral Characterization of the FERMI Pulses in the Presence of Electron-beam Phase-space Modulations 213
 
  • E. Allaria, S. Di Mitri, W.M. Fawley, E. Ferrari, L. Fröhlich, L. Giannessi, B. Mahieu, G. Penco, C. Spezzani, M. Trovò
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • G. De Ninno, S. Spampinati
    University of Nova Gorica, Nova Gorica, Slovenia
 
  As a seeded FEL based on a single stage HGHG configuration, FERMI's FEL-1 has produced very narrow bandwidth FEL pulses in the XUV wavelength region relative to those typical of SASE devices. This important feature of seeded FELs relies however upon the capability to produce high quality electron beams and with clean longitudinal phase spaces. As has been predicted previously, the FEL output spectra can be modified from a simple, nearly transform-limited single spike by modulation and distortions of the longitudinal phase space of the electron beam. In this work we report a study of the FEL spectra recorded at FERMI for various situations showing the effects of phase-space modulation on the FEL properties.  
slides icon Slides TUOB02 [4.376 MB]  
 
TUPD17 Seeding of SPARC-FEL with a Tunable Fibre-based Source 269
 
  • N.Y. Joly
    University of Erlangen-Nuremberg, Erlangen-Nuremberg, Germany
  • S. Bielawski
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • W. Chang, P. Hölzer, K. Mak, P.St.J. Russell, F. Tani, J.C. Travers
    Max Planck Institute for the Science of Light, Erlangen, Germany
  • F. Ciocci, L. Giannessi, A. Petralia, M. Quattromini
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • M.-E. Couprie, M. Labat, T. Tanikawa
    SOLEIL, Gif-sur-Yvette, France
  • G. De Ninno, B. Mahieu
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • G. Gatti
    INFN/LNF, Frascati (Roma), Italy
  • V. Petrillo
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • J.V. Rau
    ISM-CNR, Rome, Italy
 
  Instead of seeding a free electron laser in the UV-VUV with a frequency doubled or tripled laser or high order harmonics, here we investigate and present the first results on seeding SPARC-FEL with a fiber-based tunable ultraviolet source. The seed generation system consists of a kagomé hollow-core photonic crystal fiber filled with noble gas. Diffraction-limited DUV pulses of >50 nJ and fs-duration which are continuously tunable from below 200 nm to above 300 nm are generated. The process is based on soliton-effect self-compression of the pump pulse down to a few optical cycles, accompanied by the emission of a resonant dispersive wave in the DUV spectral region. The quality of the compression highly depends on the pump pulse duration, and ideally, pulses <60 fs should be used. Our experimental set-up and associated GENESIS simulations enable us to study the utility of the seed tunability, and the influence of the seed quality, on the performance of the SPARC-FEL in the 200-300 nm range.