

Transverse coherence of a seeded Free-Electron Laser: the case of FERMI@Elettra

Benoît Mahieu FEL 2012, Nara (Japan)

Situation

How do FEL's compare with other coherent light sources? Is the single-pass FEL really a laser?

State of the art of transverse coherence measurements on FEL's:

- FLASH, TESLA test facility, etc. [A. Singer et al., *Phys. Rev. Lett.* **101**, 254801 (2008); A. Singer et al., Opt. Express. **20**, 16 (2012); etc.]
- LCLS [I. A. Vartanyants et al., Phys. Rev. Lett. 107, 144801 (2011)]
- MAX-Lab Test-FEL J. Schwenke, talk and proceedings of FEL 2011

Purpose of measurements at FERMI@Elettra:

Characterize a new kind of user-dedicated FEL source (seeded, harmonic generation, extreme-ultraviolet)

Compare seeded and SASE FEL configurations

Characterize the light for users

Motivation

Applications requiring a high degree of coherence such as diffraction imaging

Courtesy of F. Capotondi

\rightarrow <u>Outline</u>:

- 1. Description of the experiment and direct results
- 2. Comparison of transverse coherence with other sources
- 3. Predictions for a Gauss-Schell Model beam

FEL configuration

Self-Amplified Spontaneous Emission – SASE (SACLA, LCLS, FLASH)

er beam

Seeding and harmonic generation/amplification (FERMI@Elettra)

FEL emission = « copy » of the seed (spectrum and time) Is it also true for transverse properties? (intensity, wavefront, coherence)

Benoît Mahieu

Setup for Young's experiment

Setup design: C. Svetina & S. Gerusina

Principle

Coherence of light: ability to interfere

Degree of coherence → « quality » of the interference → visibility V of the fringes

IF: 1) the spectrum is narrow enough
2) the intensities from both slits are equal
3) the temporal coherence does not affect the quality of the interference

THEN: Degree of transverse coherence = $V(x) = \frac{I_{max}(x) - I_{min}(x)}{I_{max}(x) + I_{min}(x)}$

 $V = 1 \rightarrow$ full coherence (e.g., single-mode lasers) $V = 0 \rightarrow$ incoherent light

Experimental results in standard conditions

Transverse coherence of a Gauss-Schell Model (GSM) beam

For GSM at source

= $\sqrt{I(x_1)} \times \sqrt{I(x_2)} \times degree \ of \ transverse \ coherence(x_1, x_2)$ I(x) and the degree of transverse coherence are Gaussians.

CROSS-SPECTRAL

[L. Mandel and E. Wolf, Optical Coherence and Quantum Optics]

DENSITY

In general $\sum = \sum_{j} \beta_{j} \phi_{j} \phi_{j}^{*}$

 ϕ_i are Hermite-Gauss functions (TEM modes) of weight β_i

\blacktriangleright Retrieval of the degree of transverse coherence at any position z

Comparison with GSM: modes & coherence at z = 65 m

Assumption: FERMI@Elettra = GSM source (size and divergence measured) Theoretical mode proportions and degree of transverse coherence

Comparison with GSM: modes & coherence at z = 65 m

Assumption: FERMI@Elettra = GSM source (size and divergence measured) Theoretical mode proportions and degree of transverse coherence

Comparison with GSM: intensity at z = 73.5 m

	Radius σ _x [mm]
GSM	2.3
experiment	2.4 +/- 0.06

The GSM is in good agreement with the FERMI@Elettra measurements @32.5nm for transverse coherence and intensity distributions

Conclusion

- « Good » transverse coherence of FERMI@Elettra

- > Possibility to consider its light as a Gauss-Schell model beam
- Extend studies to recent Shack-Hartman measurements
- Difference found between seeded and SASE FEL's.

Comparison has to be pushed i.e., do measurements with similar setups on different facilities Possible to try in SASE mode on FERMI@Elettra!

 \rightarrow How could the seed act for improving transverse qualities?

More generaly, how to manage the spatial characteristics of the FEL light? (spatial quality / emittance of the electron beam, etc.)

Acknowledgements

- Giovanni De Ninno, Enrico Allaria, William Fawley, Eugenio Ferrari, Luca Giannessi, Carlo Spezzani, Simone Spampinati
- Marco Zangrando, Lorenzo Raimondi, Nicola Mahne and Cristian Svetina (PADReS, light transport & characterization)
- Fulvio Parmigiani
- Flavio Capotondi and the whole DIPROI beamline
- David Garzella, David Gauthier and Aura-Inès Gonzalez (CEA Saclay)

And thank you for your attention! ありがとうございます arigatō gozaimasu

Prediction of Gauss-Schell Model @ 20.8 and 13.7 nm

Assuming that the model applies well also to other wavelengths, the decrease of spatial coherence vs. wavelength is very slow.

Comparison after focusing

After focusing

The second order correlations of the wave fields are described in the theory of coherence by the mutual coherence function (MCF) $\Gamma_{12}(\tau)$, that defines the correlations between two complex values of the electric field $E(\mathbf{r}_1, t)$ and $E^*(\mathbf{r}_2, t + \tau)$ at different points \mathbf{r}_1 and \mathbf{r}_2 and separated by the time interval τ

$$\Gamma(\mathbf{r}_1, \mathbf{r}_2, \tau) = \langle E(\mathbf{r}_1, t) E^*(\mathbf{r}_2, t+\tau) \rangle, \qquad (1)$$

where the brackets $\langle \rangle$ indicate the ensemble average. Correlations of the field in the spatial-frequency domain are determined by the cross-spectral density function (CSD) $W(\mathbf{r}_1, \mathbf{r}_2, \omega)$, which is a Fourier transform of the MCF

$$W(\mathbf{r}_1, \mathbf{r}_2, \omega) = \int_{-\infty}^{\infty} \Gamma_{12}(\tau) e^{-i\omega\tau} d\tau.$$
(2)

The spectral density of the field $S(\mathbf{r}, \omega)$ is defined as the CSD function taken at the same position $S(\mathbf{r}, \omega) = W(\mathbf{r}, \mathbf{r}, \omega)$. The normalized versions of the two functions (1) and (2) are the complex degree of coherence $\gamma(\mathbf{r}_1, \mathbf{r}_2, \tau)$ and the spectral degree of coherence $\mu(\mathbf{r}_1, \mathbf{r}_2, \omega)$, respectively.

> « Good » degree of coherence (>0.8 for d/ σ_x <0.5) & spatial shape ajouter surf(Bsum) et sigma+/-std

