Author: Kondakov, A.A.
Paper Title Page
WEOC03 The Novosibirsk Terahertz FEL Facility - Current Status and Future Prospects 361
 
  • O.A. Shevchenko, V.S. Arbuzov, K.N. Chernov, E.N. Dementyev, B.A. Dovzhenko, Ya.V. Getmanov, E.I. Gorniker, B.A. Knyazev, E.I. Kolobanov, A.A. Kondakov, V.R. Kozak, E.V. Kozyrev, V.V. Kubarev, G.N. Kulipanov, E.A. Kuper, I.V. Kuptsov, G.Y. Kurkin, L.E. Medvedev, L.A. Mironenko, V.K. Ovchar, B.Z. Persov, A.M. Pilan, V.M. Popik, V.V. Repkov, T.V. Salikova, M.A. Scheglov, I.K. Sedlyarov, G.V. Serdobintsev, S.S. Serednyakov, A.N. Skrinsky, S.V. Tararyshkin, V.G. Tcheskidov, N. Vinokurov, M.G. Vlasenko, P. Vobly, V. Volkov
    BINP SB RAS, Novosibirsk, Russia
 
  The Novosibirsk terahertz FEL facility is based on the normal conducting CW energy recovery linac (ERL) with rather complicated lattice. This is the only multiorbit ERL in the world. It can operate in three different modes providing electron beam for three different FELs. The first FEL works for users since 2003. This FEL radiation is used by several groups of scientists which include biologists, chemists and physicists. Its maximum average and peak powers are 500 W and 1MW and wavelength can be tuned from 110 up to 240 microns. The high peak and average powers are used in experiments on material ablation and biological objects modification. The second FEL is installed on the second orbit. The first lasing of this FEL was achieved in 2009. Its radiation has almost the same average and peak powers and is delivered to the same user stations as the first FEL one, but its tunability range lies between 35 and 80 microns. The third FEL will be installed on the fourth orbit. In this paper we report the latest results obtained from the operating FELs as well as our progress with the commissioning of the two remaining ERL orbits. We also discuss possible options for the future upgrade.  
slides icon Slides WEOC03 [5.364 MB]