The Novosibirsk Terahertz FEL Facility

Current Status and Future Prospects

O.A. Shevchenko

BINP, Novosibirsk, Russia

The 34th FEL Conference, 26 - 31 August 2012, Nara, Japan

NovoFEL Team

N.A.Vinokurov, V.S.Arbuzov, K.N.Chernov, E.N.Dementyev, B.A.Dovzhenko, Ya.V.Getmanov, E.I.Gorniker, B.A.Knyazev, E.I.Kolobanov, A.A.Kondakov, V.R.Kozak, E.V.Kozyrev, V.V.Kubarev, G.N.Kulipanov, E.A.Kuper, I.V.Kuptsov, G.Ya.Kurkin, L.E.Medvedev, L.A.Mironenko, V.K. Ovchar, B.Z.Persov, A.M.Pilan, V.M.Popik, V.V.Repkov, T.V.Salikova, M.A.Scheglov, I.K.Sedlyarov, G.V.Serdobintsev, S.S.Serednyakov, A.N.Skrinsky, S.V.Tararyshkin, V.G.Tcheskidov, M.G.Vlasenko, P.D.Vobly, V.N.Volkov, **O.A.Shevchenko**

The 34th FEL Conference, 26 - 31 August 2012, Nara, Japan

Outline

- Accelerator design overview
- The first stage of the FEL facility design and operation experience
- The second and the third stages design and commissioning status
- Nearest plans

Energy Recovery Linac

1 – injector, 2 – linac, 3 – bending magnets, 4 – undulator, 5 – dump

Energy Recovery Linac

1 – injector, 2 – linac, 3 – bending magnets, 4 – undulator, 5 – dump

Siberian Center of Photochemical Research

Siberian Center of Photochemical Research

2nd stage FEL undulator

Horizontal tracks

1st stage FEL undulator Main linac

Injector, main linac and first stage beamlines

1 – electron gun, 2 – bunching RF cavity, 3 – focusing solenoids, 4 – merger, **5** – main linac, **6** – quadrupoles, **7** – magnetic mirror, 8 - undulator, 9 - buncher, **10** – optical cavity mirror, **11** – calorimeter , **12** - dump.

Electron beam from the gun passes through the buncher (a bunching RF cavity), drift section, 2 MeV accelerating cavities and the main accelerating structure and the undulator, where a fraction of its energy is converted to radiation. After that, the beam returns to the main accelerating structure in a decelerating RF phase, decreases its energy to its injection value (2 MeV) and is absorbed in the beam dump.

Electrostatic gun

90 MHz RF gun test setup

Injector

Injector

Main linac

Main linac

Undulator

Period, cm	12
Maximum current, kA	2.4
Maximum K	1.25

Undulator

Optical cavity

Radiation power time-dependence (1st stage)

Optical beamline

Optical beam expander

Optical beamline

Optical beamline

The 1st stage FEL radiation parameters

 Radiation wavelength, mm 	0.12 - 0.24
 Pulse duration, ps 	70
 Repetition rate , MHz 	11.2
 Maximum average power, kW 	0.5
 Minimum relative linewidth (FWHM) 	3·10 ⁻³
 Peak power, MW 	1

The obtained radiation parameters are still the world record in terahertz region.

- 1. Measurement of molecular weight of synthetic polymers using THz ablation
- 2. Using THz ablation for study fractional composition of vaccines.
- 3. Study of the spectrum of electronic states in Si / CaF_2 BaF₂ / PbSnTe:In nanoheterostructures.
- 4. Investigation into the interaction of THz radiation with new functional resonant metamaterials for devices controlling the polarization, phase, intensity and direction of propagation of radiation.
- 5. Metamaterials based on precision micro- and nanoshells for terahertz and infrared ranges.
- 6. Investigation into the interaction of THz radiation with materials based on carbon nanotubes.
- 7. Production of carbon nanostructures with the help of NovoFEL radiation.
- 8. Determination of the fractional composition of nanoproducts of mechanical activation of double oxsides.
- 9. Exploration of composite silicon-polymer nanostructures.

- 1. Measurement of molecular weight of synthetic polymers using THz ablation
- 2. Using THz ablation for study fractional composition of vaccines.
- 3. Study of the spectrum of electronic states in Si / CaF₂ BaF₂ / PbSnTe:In ParPioneering works on THz ablation

4. Investigation into the interaction of THz radiation with new functional resonant ••Study of micro-tandt nanoparticles, evaccines; of propagation of radiation. polymers, metamaterials based on precision micro- and nanoshells for terahertz and

infrared ranges.

Production of nanotubes and the materials based on carbon nanostructures

7. Production of carbon nanostructures with the help of NovoFEL radiation.

Composite diagnostics ion of nanoproducts of mechanical activation of double oxsides.

9. Exploration of composite silicon-polymer nanostructures.

- 10.Spectral selective radioscopy.
- 11. Demonstration of imaging and detection of concealed objects.
- 12. Speckle photography and speckle interferometry.
- 13. Classic in-line holography.
- 14. Classic optical coherent tomography.
- 15. Talbot metrology.

16. Imaging attenuated total reflection (ATR) spectroscopy. Plasmon spectroscopy of surfaces and films.

- 17. Ellipsometry in THz region.
- 18. Development of methods for flame diagnostics using the THz FEL.
- 19. Investigation of H_2 - O_2 combustion by THz radiation tuned on H_2O absorbing lines.
- 20. Measurements of the concentration of H₂O vapor in flames.
- 21. Investigation of the explosion and detonation in gas mixtures.

- Terahertz radioscopy, imaging, detection of concealed objects interferometry.
- 13. Classic in-line holography.
- Interferomety, holography & tomography
- 5. Talbot metrology.
- 16. Specklet and Talbot metrology. Plasmon spectroscopy of surfaces and films.
- 17. IEllipsometryon.
- 18. Development of methods for flame diagnostics using the THz FEL.
- 19. Inv**Fast water vapor detection** tuned on H₂O absorbing lines.
- Flame and gas detonation study
 Investigation of the explosion and detonation in gas mixtures.

- 22. Study of the impact of THz radiation on genetic material.
- Exploration of the impact of THz radiation on stress-sensitive biological cell systems.
- 24. THz radiation influence of the katG and E.coli dps genes.
- 25. Study of the integrated proteomic response of E.coli to exposure by terahertz radiation.
- 26. Exploration of coherent effects in gas in experiments using THz free electron laser.
- 27. Ultrafast high-resolution THz time-domain spectroscopy.
- 28. Experimental study of photoeffect for noble gas atoms in strong terahertz field.

Second and third stages beamlines

Second and third stages beamlines

(horizontal plane)

Magnets and vacuum chamber of bends

Second track

dan C

First track

c

Electromagnetic undulator at bypass

The 3rd stage FEL undulator

The 3rd stage FEL undulator

Second and third stages beamlines

Second and third stages beamlines

Electron outcoupling scheme is used here

The second and the third stages ERL and FEL basic parameters

Electron beam energy, MeV	20/40
Number of orbits	2/4
Maximum bunch repetition frequency, MHz	22 (90)
Beam average current, mA	30 (100)
Wavelength range, micron	5-120
Maximum output power, kW	10

80% of the beam current goes to the dump

80% of the beam current goes to the dump

Current status

The first in the world multiturn ERL was commissioned and now it works for high power FEL (average power 0.5 kW in wavelength range 40-80 microns). The FEL radiation is delivered to exiting user stations.

Commissioning of the third stage ERL is in progress. The recuperation efficiency of 80 % is already achieved that allowed to increase the average current up to 1 mA.

Nearest plans

 Commissioning of the third stage ERL and FEL: lattice optimization; installation of the third FEL undulators; optical cavity design and production.

• Existing FELs stability and parameters improvement: modification of RF power generators; production of the new power supply for existing DC gun and new RF gun development.

•Working for users and new user stations development.

Thank you for your attention!

RF waveguides and feeders

RF waveguides and feeders

RF waveguides and feeders

RF power supply

Frequency, MHz	180.4
Power, MW	1

RF power supply

Frequency, MHz	180.4
Power, MW	1

Compact 13.5-nm free-electron laser for extreme ultraviolet lithography Y. Socol, G. N. Kulipanov, A. N. Matveenko, O. A. Shevchenko and N. A. Vinokurov, FEL10

With 10-T superconducting magnet it may be used to generate 20-fs **periodic** x-ray pulses, which are necessary for time-resolved experiments, which use femtoslicing technique at storage rings now. But, the number of useful photons is thousands times more.