Paper | Title | Page |
---|---|---|
TUPA02 | Development of Material Analysis Facility in KU-FEL | 190 |
|
||
A mid infrared-free electron laser (MIR-FEL) (5-20 μm) facility (KU-FEL: Kyoto University Free Electron Laser) has been constructed for contributing to researches on energy science at Institute of Advanced Energy, Kyoto University. Up to now 12-14 μm FEL beam has been generated. When MIR-FEL with the wavelength matched to the molecular vibration mode is irradiated to the material, a particular chemical bond in the material will be selectively excited, or dissociated [1]. The selective photochemical reaction can be applied for surface modification and the evaluation of material in biochemistry, chemistry, and solid physics. Therefore, material analysis facility in combination with MIR-FEL is constructed. In the material analysis facility, advanced analysis systems such as photoluminescence measurement system, photoelectron spectroscopy, super centrifuge and high performance liquids chromatography, ICP emission spectroscopy, and high speed atomic force spectroscopy are installed. In this meeting, the development of material analysis facility will be introduced.
[1] Jhon C.Tully, Science, 312(2006) 1004 |
||
WEPB17 | Evaluation of Lasing Range with a 1.8 m Undulator in KU-FEL | 417 |
|
||
In KU-FEL (Kyoto University FEL) 12-14 μm FEL has been available by using a 40 MeV S-bend linac and 1.6 m undulator. We are going to install 1.8 m undulator which was used in JAEA to extend the lasing range of KU-FEL. Numerical evaluation of the lasing range has been carried out by using GENESIS1.3. However, this work used an ideal undulator field data which was measured by JAEA in several years before. Therefore we re-measured the undulator field for different gaps. Then we evaluated the FEL gain and possible lasing range with 1.8 m undulator using measured undulator field. The undulator field measurement, FEL gain calculations and evaluation of lasing range in KU-FEL will be presented in the conference. | ||
WEPB19 | Enhancement of Undulator Field in Bulk HTSC Staggered Array Undulator with Hybrid Configuration | 424 |
|
||
Funding: This work was supported by the Grant-in-Aid for Scientific Research B and JSPS Fellows by the Ministry of Education, Culture, Sports, Science and Technology of Japan The purpose of this study is enhancement of the undulator field and it's stability in bulk high temperature superconductor staggered array undulator by introducing hybrid configuration. The authors made the magnetic field calculations with some hybrid configurations consists of bulk HTSCs, ferromagnetic pieces and permanent magnets. We also made prototype measurements. The results shows the hybrid configuration can generates stronger and more uniform magnetic field than bulk-HTSCs-only configuration. In this conference, numerical and experimental results of the hybrid configuration will be presented. |
||
THPA34 | Assessment of Thermionic Emission Properties and Back Bombardment Effects for LaB6 and CeB6 | 557 |
|
||
Back Bombardment (BB) effect limits wide usage of thermionic RF guns. BB effect induces not only ramping-up of a cathode’s temperature and beam current, but also degradation of cavity voltage and beam energy during the macropulse. In this research we are clarifying BB phenomenon and find out cathode material properties contribution on BB effect. Therefore, assessment of emission properties and comparison of BB effect in LaB6 and CeB6 are introduced. Emission properties for these materials are measured in temperature range between 1600 and 2100 K. Then, heating property of materials is investigated against BB effect by numerical calculation of stopping range and deposited heat. Finally, change in cathode temperate and corresponding change in current density during 6 μs pulse duration is determined. Experimental results estimates work functions at 1800 K for LaB6 and CeB6 were 2.8 and 2.75 eV respectively. Our simulation of BB effect shows that for a pulse of 6 μs duration, LaB6 cathode experiences a large change in temperature compared with CeB6. The change in current density is two times higher. The experimental and simulation results will be presented in the meeting | ||
TUPA11 | Saturation Effect on VUV Coherent Harmonic Generation at UVSOR-II | 212 |
|
||
Light source by using a laser seeding technique are under development at the UVSOR-II electron storage ring. In the past experiments, we have succeeded in generating coherent harmonics (CHs) in deep ultraviolet (UV) and vacuum UV (VUV) region, and also in generating CH with variable polarizations in deep UV [1]. In previous conferences, we reported an introduction of new-constructed spectrometer for VUV and results of spectra measurement, undulator gap dependencies, and injection laser power dependencies on VUV CHs [2]. This time we have successfully observed saturation on CHs intensities and have found some interesting phenomena, which are the necessary power of injection laser to achieve the saturation of CHG is different in different harmonic orders, and the CH intensity is oscillated in deep saturated regime. In this conference, we will discuss the results of some systematic measurements and those analytical and particle tracking simulations.
[1] M. Labat, et al., Phys. Rev. Lett. 101 (2008) 164803 [2] T. Tanikawa, et al., Prc. 1st Int. Particle Accelerator Conf., Kyoto, 2010. [3] T. Tanikawa, et al., Appl. Phys. Express 3 (2010) 122702 |
||
TUPA13 | Present Status and Future Prospects of Project on Utilizing Coherent Light Sources for User Experiments at UVSOR-II | 215 |
|
||
Funding: Quantum Beam Technology Program supported by JST/MEXT (Japan) We have been intensively developing coherent light sources utilizing electron bunches in the storage ring, UVSOR-II, by adding some external components to the ring. After successful generation of coherent synchrotron radiation (CSR) in THz range* and coherent harmonic generation (CHG) in DUV range** by using an intense driving laser, a 5-year new research project named as Quantum Beam Technology Program has been started from FY2008. The project includes introduction of new driving laser system, dedicated undulators and beamlines, and aims at utilizing those coherent radiations for user experiments. The new driving laser system has been installed last year. The undulators and beamlines are now under construction. Installation of those components will be finished before the conference. In the conference, we will report on the present status of system development and future plan of application experiments. *M. Shimada et al., Japanese Journal of Applied Physics, vol. 46, pp. 7939-7944 (2007). **M. Labat et al., European Physical Journal D, vol. 44, pp. 187-200 (2007). |
||
WEPA17 | Technical Developments for Injecting External Laser to a Storage Ring FEL in CW and Q-switched Operation | 362 |
|
||
For controlling the dynamics of a storage ring FEL, we propose to inject the FEL oscillator with an external laser [1]. Another purpose is generation of long sustain and intense coherent synchrotron radiation with combining Q-switched and injected FEL [2]. In this presentation, we will report on technical developments for injecting the external laser to FEL oscillator, which works both in CW and Q-switched operation. Optical system for injecting external laser and RF modulation system for Q-switching are newly developed. Practical problems and way to overcome them will be discussed.
[1] C. Szwaj et al., FEL2011, TUPB05, in this conference. [2] M. Hosaka et al., FEL2011, WEOC4, in this conference. |
||
WEPA18 | Chirped Pulse Generation by CHG-FEL | 366 |
|
||
Funding: Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B), 23760067 (Japan) Coherent Harmonic Generation Free Electron Laser (CHG-FEL)* is one of the promising ways to generate coherent, femtosecond and short-wavelength optical pulses from electron bunches circulating in an electron storage ring. However, the CHG pulse energy becomes smaller as the shorter pulse of laser is used for driving CHG-FEL because the number of electrons which contribute to the CHG production is limited by the pulse duration of driving laser. We proposed “chirped pulse generation and compression of CHG-FEL” to overcome such trade-off relationship, and got a small budget for proof-of-principle experiments in DUV region. In the experiment, chirped DUV pulses will be generated by CHG-FEL driving with chirped laser, and the DUV pulses will be compressed by a pulse compressor. The pulse duration of CHG-FEL before and after the compressor will be measured by a crosscorrelator. The principle, strategy, present status, and future prospects will be presented in the conference. *R. Coisson and F De Martini, Physics of Quantum Electronics (Addison−Wesley, 1982) vol. 9. chap. 42. |
||
WEOC4 |
Intense Coherent THz Synchrotron Radiation Induced by a Storage Ring FEL Seeded with a Femtosecond Laser | |
|
||
Very recently, we have succeeded in seeding a resonator FEL by injecting an external femtosecond laser at the UVSOR-II storage ring [1]. Intense coherent synchrotron radiation (CSR) in the THz region from a bending magnet was observed when the seeded FEL was operated in the pulsed Q-switch mode [2]. We have also found that the CSR intensity depends on the pulse duration of the seed laser. The CSR intensity is enhanced with short pulse ~200 fsec and suppressed with longer pulse ~200 psec. Simultaneous measurement of the terahertz radiation and the FEL pulse reveals that the radiation is emitted in the growing phase of the Q-switch FEL pulse. We think that the CSR comes from repetitive interactions between the laser pulse and the electron bunch as the short pulse laser growth in the optical cavity. In the presentation, we will also discuss the production mechanism of the CSR.
[1] C. Szwaj et al., FEL2011, TUPB05, in this conference. [2] H. Zen et al., FEL2011, TUPA13, in this conference. |
||
![]() |
Slides WEOC4 [2.715 MB] | |