Author: Krzywinski, J.
Paper Title Page
WEOA2 SASE FEL Pulse Duration Analysis from Spectral Correlation Function 318
 
  • A.A. Lutman, Y.T. Ding, Y. Feng, Z. Huang, J. Krzywinski, M. Messerschmidt, J. Wu
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515.
A new method to measure the X-rays pulse duration through the analysis of the statistical properties of the SASE FEL spectra has been developed. The information on the pulse duration is contained in the correlation function of the intensity spectra measured after a spectrometer. The spectral correlation function is derived analytically for different profile shapes in the exponential growth regime and issues like spectral central frequency jitter and shot by shot statistical gain are addressed. Numerical simulations will show that the method is applicable also in saturation regime and that both pulse duration and spectrometer resolution can be recovered from the spectral correlation function. The method has been experimentally demonstrated at LCLS, measuring the soft X-rays pulse durations for different electron bunch lengths, and the evolution of the pulse durations for different undulator distances. Shorter pulse durations down to 13 fs FWHM have been measured using the slotted foil.
 
slides icon Slides WEOA2 [0.758 MB]  
 
THOC4 Transverse Size and Distribution of FEL X-ray Radiation of the LCLS 465
 
  • J.L. Turner, F.-J. Decker, Y.T. Ding, P. Emma, J.C. Frisch, K. Horovitz, Z. Huang, R.H. Iverson, J. Krzywinski, H. Loos, M. Messerschmidt, S.P. Moeller, H.-D. Nuhn, D.F. Ratner, J.J. Welch, J. Wu
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515
Understanding and controlling the transverse size and distribution of FEL X-ray radiation of the LCLS at the SLAC National Accelerator Laboratory is discussed. Understanding divergence, source size, and distributions under various conditions is a convolution of many effects such as the electron distribution, the undulator alignment, micro-bunching suppression, and beta-match. Measurements of transverse size along the X-ray pulse and other studies designed to sort out the dominant effects are presented and discussed.
 
slides icon Slides THOC4 [1.874 MB]  
 
THPB31 Multiple FELs from the One LCLS Undulator 629
 
  • F.-J. Decker, P. Emma, J.C. Frisch, K. Horovitz, Z. Huang, R.H. Iverson, J. Krzywinski, H. Loos, S.P. Moeller, H.-D. Nuhn, J.L. Turner, J.J. Welch, J. Wu
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Science, under Contract DE-AC02-76SF00515.
The FEL of the Linac Coherent Light Source (LCLS) at SLAC is generated in a 132 m long undulator. By introducing a kink in the undulator setup and launching different electron pulses with a small kick, we achieved two FEL beams with a separation of about 10 σ. These beams were separated at down stream mirrors and brought to the entrances of the soft and hard X-ray hutches. This was done at low energy creating soft X-rays which require only a shorter length to get to saturation. At high energy the whole undulator has to be "re-pointed" pulse by pulse. This can be done using 33 undulator correctors creating two straight lines for the photons with small angle to point the FEL to different mirrors pulse by pulse even at high energy. Experiments will be presented and further ideas discussed to get different energy photons created and sent to the soft and hard X-ray mirrors and experiments.