SASE FEL PULSE DURATION ANALYSIS FROM SPECTRAL CORRELATION FUNCTION

FEL Conference 2011 Shanghai, 24. August. 2011

<u>Alberto Lutman</u> Jacek Krzywinski, Yuantao Ding, Yiping Feng, Juhao Wu, Zhirong Huang, Marc Messerschmidt

X-ray pulse duration measurement

S LAGORATORY

Electron beam current:

$$I(t) = (-e)\sum_{k=1}^{N} \delta(t - t_k)$$

 t_k are independent random variables with probability density f(t)

SASE FEL Amplifier in linear regime:

$$\begin{split} E(t) &= \int_{-\infty}^{+\infty} h(t,\tau) I(\tau) d\tau = \int_{-\infty}^{+\infty} h_{ti}(t-\tau) h_{td}(\tau) I(\tau) d\tau \\ h_{ti}(t-\tau) &= A_0(z) e^{i(k_0 z - \omega_0(t-\tau))} e^{-\frac{(t-\tau - z/\nu_g)^2}{4\sigma_t^2} \left(1 + \frac{i}{\sqrt{3}}\right)} \quad \text{time independent} \end{split}$$

 $h_{_{td}}(au)$ time dependent

Electric field spectrum:

$$\tilde{E}(\boldsymbol{\omega}) = (-e)\tilde{H}_{ti}(\boldsymbol{\omega})\sum_{k=1}^{N}h_{td}(t_k)e^{i\boldsymbol{\omega} t_k}$$

Average x-ray profile: $X(t) = |h_{td}(t)|^2 f(t)$

First and second order correlations

$$\left\langle \tilde{E}(\boldsymbol{\omega}')\tilde{E}^{*}(\boldsymbol{\omega}'')\right\rangle = e^{2}N\tilde{H}_{ti}(\boldsymbol{\omega}')\tilde{H}_{ti}(\boldsymbol{\omega}'')\tilde{X}(\boldsymbol{\omega}'-\boldsymbol{\omega}'')$$
$$\left\langle \left|\tilde{E}(\boldsymbol{\omega}')\right|^{2}\left|\tilde{E}(\boldsymbol{\omega}'')\right|^{2}\right\rangle = e^{4}N^{2}\left|\tilde{H}_{ti}(\boldsymbol{\omega}')\right|^{2}\left|\tilde{H}_{ti}(\boldsymbol{\omega}'')\right|^{2}\left(\tilde{X}(0) + \left|\tilde{X}(\boldsymbol{\omega}'-\boldsymbol{\omega}'')\right|^{2}\right)$$

First and second order correlations functions

$$g_{1}(\boldsymbol{\omega}',\boldsymbol{\omega}'') = \frac{\left\langle \tilde{E}(\boldsymbol{\omega}')\tilde{E}^{*}(\boldsymbol{\omega}'')\right\rangle}{\sqrt{\left\langle \left|\tilde{E}(\boldsymbol{\omega}')\right|^{2}\right\rangle \left\langle \left|\tilde{E}(\boldsymbol{\omega}'')\right|^{2}\right\rangle}} \qquad g_{2}(\boldsymbol{\omega}',\boldsymbol{\omega}'') = \frac{\left\langle \left|\tilde{E}(\boldsymbol{\omega}')\right|^{2}\left|\tilde{E}(\boldsymbol{\omega}'')\right|^{2}\right\rangle}{\left\langle \left|\tilde{E}(\boldsymbol{\omega}'')\right|^{2}\right\rangle \left\langle \left|\tilde{E}(\boldsymbol{\omega}'')\right|^{2}\right\rangle \left\langle \left|\tilde{E}(\boldsymbol{\omega}'')\right|^{2}\right\rangle \right\rangle}$$

$$\left|g_{1}(\boldsymbol{\omega}',\boldsymbol{\omega}'')\right| = \frac{\left|\tilde{X}\left(\boldsymbol{\omega}'-\boldsymbol{\omega}''\right)\right|}{\tilde{X}\left(0\right)}$$

 $g_2(\boldsymbol{\omega}',\boldsymbol{\omega}'') = 1 + |g_1(\boldsymbol{\omega}',\boldsymbol{\omega}'')|^2$

Valid in the linear regime

For non-linear regime, we run numerical simulations

Correlation of the intensity at the exit of the spectrometer

$$G_{2}(\delta\omega) = \frac{\left\langle S\left(\omega_{0} + \frac{\delta\omega}{2}\right) S\left(\omega_{0} - \frac{\delta\omega}{2}\right) \right\rangle}{\left\langle S\left(\omega_{0} + \frac{\delta\omega}{2}\right) \right\rangle \left\langle S\left(\omega_{0} - \frac{\delta\omega}{2}\right) \right\rangle} - 1$$

 $S(\omega)$ Intensity spectrum at frequency ω

 ω_0 Central frequency of amplification

Procedure to calculate G₂

G₂ function for different X(t) profiles

We assume that the spectrometer has Gaussian resolution function

relative rms spectrometer resolution

$$G_{2}(\delta\omega) = \int_{-\infty}^{+\infty} \frac{e^{-\frac{(\zeta - \delta\omega\xi_{0})^{2}}{2\sigma^{2}}} \left|\tilde{X}(\zeta, T)\right|^{2}}{\sqrt{2\pi\sigma}} d\zeta$$

$$\xi_0 = \frac{\sigma_a^2}{\sigma_m^2 + \sigma_a^2} \omega_0$$
$$\sigma = \sqrt{2} \frac{\sigma_a \sigma_m}{\sqrt{\sigma_m^2 + \sigma_a^2}} \omega_0$$

To find an analytical expression for G_2 we need just to plug in the X(t) average profile

G₂ with Gaussian profile

G₂ with flat top profile

$$X(t,T) = \begin{cases} \frac{1}{T} & |t| \le \frac{T}{2} \\ 0 & |t| > \frac{T}{2} \end{cases} \qquad G_2(\delta\omega) = 2\int_0^1 e^{-\frac{\zeta^2 \sigma^2 T^2}{2}} (1-\zeta) \cos(\delta\omega\xi_0 T\zeta) d\zeta$$

Non stationary ω_0 and FEL gain jitter

Non stationary ω_{0} and FEL gain jitter

Shot to shot gain as random variable with average \overline{G}

correlate spectral
$$I' = (\overline{G} + \Delta G)(\overline{S}' + \Delta S')$$
 at ω'
intensities $I'' = (\overline{G} + \Delta G)(\overline{S}'' + \Delta S'')$ at ω''
 $\frac{\langle I'I''\rangle}{\langle I''\rangle} = \left(1 + \frac{\langle \Delta S' \Delta S''\rangle}{\overline{S}'\overline{S}''}\right) \left(1 + \frac{\langle \Delta G^2\rangle}{\overline{G}^2}\right)$
 $G_2(\omega', \omega'') = \frac{\frac{\langle I'I''\rangle}{\langle I''\rangle}}{1 + \frac{\langle \Delta G^2\rangle}{\overline{G}^2}} - 1$

Numerical simulations

1) Verify that relations hold well enough in saturation

2) Recover bunch length and spectrometer resolution

- 30μ m electron bunch
- 3μ m electron bunch

Wavelength 0.8 nm Undulator period 3 cm

-
$$\sigma_m = 1 \times 10^{-4}$$

- $\sigma_m = 2 \times 10^{-4}$

Verify relation

NATIONAL ACCELERATOR LABORATOR

Shanghai, 24.August.2011

Simulated measurements results

Experimental results

Experimental demonstration performed at LCLS

Photon energy 1.5 keV Electron charge 250 pC

Different undulator length Different peak current Controlling lasing part of electron bunch with slotted foil

Different undulators distance

Different peak currents

ATIONAL ACCELEDATOD LABODAT

Slotted foil measurements

Thank you for your attention

