Author: Fisher, A.S.
Paper Title Page
TUPB22 THz Pump and X-Ray Probe Development at LCLS 304
 
  • A.S. Fisher, H.A. Durr, J.C. Frisch, M. Fuchs, S. Ghimire, J.J. Goodfellow, A. Lindenberg, H. Loos, M. Petree, D.A. Reis
    SLAC, Menlo Park, California, USA
  • D.R. Daranciang
    Stanford University, Stanford, California, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract DE-AC02-76SF00515.
We report on measurements of broadband, intense, coherent transition radiation at terahertz frequencies, generated as the highly compressed electron bunches in LCLS pass through a thin metal foil. The foil is inserted at 45 degrees to the electron beam, 30 m downstream of the undulator. The THz emission passes downward through a diamond window to an optical table below the beamline. A fully compressed 350-pC bunch produces over 0.5 mJ in a nearly half-cycle pulse of 50 fs FWHM with a spectrum peaking at 10 THz. We estimate a peak field at the focus of over 2.5 GV/m. Electro-optic measurements using a newly installed 20-fs Ti:sapphire oscillator will be presented. We will discuss plans to add a THz pump and x-ray probe setup, in which a thin silicon crystal diffracts FEL light onto the table with adjustable time delay from the THz. This will provide a rapid start to user studies of materials excited by intense single-cycle pulses and will serve as a step toward a THz transport line for LCLS-II.
 
 
THOB5 FEL Spectral Measurements at LCLS 461
 
  • J.J. Welch, F.-J. Decker, Y.T. Ding, P. Emma, A.S. Fisher, J.C. Frisch, Z. Huang, R.H. Iverson, H. Loos, M. Messerschmidt, H.-D. Nuhn, D.F. Ratner, J.L. Turner, J. Wu
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported in part by the DOE Contract DE-AC02-76SF00515.
Control and knowledge of the spectrum of FEL X-ray radiation at the LCLS is important to the quality and interpretation of experimental results. Narrow bandwidth is useful in experiments requiring high-brightness beams. Wide bandwidth is particularly useful for photon energy calibration using absorption spectra. Since LCLS was commissioned in 2009 measurements have been made of average and single shot spectra of X-ray FEL radiation at the LCLS over a range of 800 to 8000 eV, for fundamental and harmonic radiation. These include correlations with chirp, bunch current, undulator K-taper, electron beam energy, and charge as well as some specialized machine configurations. In this paper we present results and discuss the relationship of the electron beam energy distribution to the observed X-ray spectrum.
 
slides icon Slides THOB5 [0.442 MB]