A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Steffen, B.

Paper Title Page
MOPC10 Ytterbium Fibre Laser Based Electro-Optic Measurements of the Longitudinal Charge Distribution of Electron Bunches at FLASH 135
 
  • L.-G. Wißmann, J. Breunlin
    Uni HH, Hamburg
  • B. Schmidt, B. Steffen
    DESY, Hamburg
 
 

The Free Electron Laser FLASH has been upgraded during winter 2009/10. Amongst other components, a third harmonic module operating at 3.9 GHz (ACC39) has been installed. Together with the energy chirp induced by off-crest operation, it allows for a linearisation of the longitudinal phase space, leading to a uniform compression of the electron bunch with final bunch lengths of 150 μm rms. In contrast to the old non-linear compression scheme, peak current and bunch length are extremely sensitive to the phases of ACC39 and ACC1 and have to be monitored continuously. The foreseen bunch length is within the resolution of electro-optic spectral decoding methods. An ytterbium fibre laser system in combination with a 175 μm thick GaP crystal is used to achieve a good match between the electric field phase velocity and the laser pulse group velocity in the electro-optic crystal. This ensures a large modulation of the polarisation of the chirped laser pulse in the EO crystal. The information on the electron bunch length carried by the laser pulse is decoded in a spectrometer and read out with an InGaAs line scan camera.

 
MOPC11 Commissioning of an Electro-Optic Electron Bunch Length Monitor at FLASH 139
 
  • J. Breunlin, L.-G. Wißmann
    Uni HH, Hamburg
  • B. Schmidt, B. Steffen
    DESY, Hamburg
 
 

The free electron laser in Hamburg (FLASH) underwent major modifications during a 6 months shutdown like the installation of a 3rd harmonic module, a seeding experiment (sFLASH) and a 7th accelerating module. Also instrumentation has been improved. A new compact electro-optic (EO) bunch length monitor has been installed downstream the first bunch compressor. At this position, the bunches are expected to have a length of about 1 ps, well suited for the resolution of an EO bunch length monitor with spectral decoding of the time (EO-SD). The setup uses a commercial ytterbium fiber laser, a compact optics inside the beam pipe designed at PSI (Switzerland) and a spectrometer with fast InGaAs line scan camera. These components, together with RF synchronisation unit and readout electronics, will be installed in the accelerator tunnel. Reliability, robustness and high uptime are key features as the EO monitor is meant to serve as permanent beam diagnostics. Here we report on the commissioning of the components and first experiments with the complete system.

 
WEPA09 A Compact Electro Optical Bunch Length Monitoring System - First Results at PSI 374
 
  • F. Müller, P. Peier, V. Schlott
    PSI, Villigen
  • B. Steffen
    DESY, Hamburg
 
 

Electro Optical (EO) sampling is a promising non-destructive method for measuring ultra short (sub picosecond) electron bunches. A prototype of a compact EO bunch length monitor system for the future SwissFEL facility was designed and built at PSI. Its core components are an optical setup including the electro optically active crystal and an Ytterbium fiber laser system which emits broadband pulses at 1050nm. The new monitoring system is described in detail and first experimental results from the SLS injector are presented.

 
WEPA10 Electro Optical Measurement of Coherent Synchrotron Radiation for Picosecond Electron Bunches With Few pC 378
 
  • B. Steffen
    DESY, Hamburg
  • F. Müller, P. Peier, V. Schlott
    PSI, Villigen
 
 

Electro Optical (EO) sampling is a promising non-destructive method for measuring ultra short (sub-ps) electron bunches. The FEMTO slicing experiment at the Swiss Light Source modulates about 3 pC of the 5 nC electron bunch longitudinally. The coherent synchrotron radiation (CSR) emitted by this substructure was measured in a single shot EO technique in gallium phosphide (GaP) using pulses from an Yb fiber laser. The arrival time jitter and the broadening of this ps long structure over several turns of the synchrotron could be measured with sub-ps resolution.

 
WEPB19 Particle Density Effects in the Transition Radiation Energy Spectrum: Theory and Experimental Investigation at PSI 441
 
  • G.L. Orlandi, R. Ischebeck, V. Schlott
    PSI, Villigen
  • B. Steffen
    DESY, Hamburg
 
 

The spectral and angular distribution of the radiation intensity by a single and individually radiating electron is in principle different from what expected from a high density electron beam. For a given wavelength, the beam particle density modifies via a charge form factor the angular and spectral distributions characterizing the radiation emission by a single electron. In particular, under high energy and high particle density conditions, the Transition Radiation (TR) energy spectrum by an electron beam is expected to be affected by the electron-transverse-density that, at very short wavelength – even in the visible, in principle - can influence the number of photons emitted at a given wavelength and their angular distribution (brightness increase with density). The investigation of such a phenomenon is relevant to beam diagnostics and to understand the bunch collective effects influencing TR emission. The status of the experimental investigation of the beam-transverse-size effects in the Optical Transition Radiation (OTR) at SLS and, in perspective, at the SwissFEL will be presented and the main formal aspects of the model predicting them will be described.

 
THOAI2 Intra-train Longitudinal Feedback for Beam Stabilization at FLASH 537
 
  • W. Koprek, C. Behrens, M.K. Bock, M. Felber, P. Gessler, H. Schlarb, Ch. Schmidt, S. Schulz, B. Steffen, S. Wesch
    DESY, Hamburg
  • J. Szewinski
    The Andrzej Soltan Institute for Nuclear Studies, Centre Swierk, Swierk/Otwock
 
 

The Free electron LASer at Hamburg (FLASH) is a linear accelerator of 330m length. It provides laser pulses with pulse duration between 10 and hundreds fs in the soft X-ray wavelength range below 5nm produced in SASE process from electron bunches with an energy up to 1.2 GeV. FLASH works in pulse mode with repetition rate of 10 Hz where up to 800 bunches at a bunch spacing of 1 us are accelerated in one macro-pulse. The electron beam time structure is well suited for fast intra-train feedbacks using beam based measurements incorporated to the Low Level Radio Frequency (LLRF) control system of the accelerator structures to further improve the bunch compressions, bunch arrival and bunch energy stability directly impacting the quality of the FEL photon beam. In this paper, we present the beam based signal pre-processing, the implementation into LLRF system, the mandatory exception handling for robust operation and the imbedding of the real-time ~ 2us latency fast intra-train feedback with feedbacks for the removal of slow and repetitive errors. First results of the achieved intra-train bunch arrival and peak current stability will be presented together with observed limitations.

 

slides icon

Slides