A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Berg, W.

Paper Title Page
TUPPH089 Vacuum and Beam Diagnostics for the Linac Coherent Light Source (LCLS) Undulator System 455
 
  • D. R. Walters, J. L. Bailey, W. Berg, P. K. Den Hartog, J. Erdmann, S.-H. Lee, R. M. Lill, J. W. Morgan, G. Pile, W. F. Toter, E. Trakhtenberg, G. E. Wiemerslage, B. X. Yang
    ANL, Argonne, Illinois
 
  The LCLS, now under construction at the Stanford Linear Accelerator Center (SLAC) in California, will be the world’s first x-ray free-electron laser when it comes online next year. Design and production of the vacuum and beam diagnostics is the responsibility of a team from the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The 3.4-m-long vacuum chambers are made from aluminum extrusions, machined to tight tolerances, and with together with a suite of precision beam diagnostic instrumentation, has been constructed and delivered to SLAC for installation. An overview of these systems, including achieved results, will be presented.  
THAAU01 Design and Construction of the Linac Coherent Light Source (LCLS) Undulator System 460
 
  • G. Pile, J. L. Bailey, T. Barsz, W. Berg, J. T. Collins, P. K. Den Hartog, H. W. Friedsam, M. S. Jaski, S.-H. Lee, R. M. Lill, E. R. Moog, J. W. Morgan, S. Sasaki, S. E. Shoaf, L. Skubal, S. J. Stein, W. F. Toter, E. Trakhtenberg, I. Vasserman, D. R. Walters, M. White, G. E. Wiemerslage, J. Z. Xu, B. X. Yang
    ANL, Argonne, Illinois
  • H.-D. Nuhn
    SLAC, Menlo Park, California
 
  The LCLS, now under construction at the Stanford Linear Accelerator Center (SLAC) in California, will be the world’s first x-ray free-electron laser when it comes online next year. LCLS design and construction are being performed by a partnership of three US National Laboratories, Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and SLAC. A team from Argonne’s Advanced Photon Source is responsible for design and construction of the high-precision, state-of-the-art undulator system, including the undulators, quadrupoles, sub-micron-precision beam diagnostics, vacuum chambers, ultra-stable and micron-level-settablesupport and motion system, and computer control and monitoring. An overview of the design, achieved precision, and stability results will be presented, together with the production status of the LCLS undulator system.