Author: Tsoupas, N.
Paper Title Page
MOPBTH005
A FFAG-ERL at Cornell, a BNL/Cornell Collaboration  
 
  • G.H. Hoffstaetter, I.V. Bazarov, J. Dobbins, B.M. Dunham, C.E. Mayes, J.R. Patterson, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • I. Ben-Zvi, J.S. Berg, M. Blaskiewicz, S.J. Brooks, K.A. Brown, W. Fischer, Y. Hao, W. Meng, F. Méot, M.G. Minty, S. Peggs, V. Ptitsyn, T. Roser, P. Thieberger, D. Trbojevic, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
 
  Cor­nell Uni­ver­sity has pro­to­typed tech­nol­ogy es­sen­tial for any high-bright­ness elec­tron ERL. This in­cludes a DC gun and an SRF in­jec­tor Linac, a high-cur­rent CW cry­omod­ule, a high-power beam stop, and sev­eral di­ag­nos­tics tools for high-cur­rent and high-bright­ness beams. All these are now avail­able to equip a one-cry­omod­ule ERL, and lab­o­ra­tory space has been cleared out and is ra­di­a­tion shielded to in­stall this ERL at Cor­nell. BNL has de­signed a multi-turn ERL for eRHIC where beam is trans­ported 22 times around the RHIC tun­nel. The num­ber of trans­port lines is min­i­mized by using two non-scal­ing FFAG arcs. A col­lab­o­ra­tion be­tween BNL and Cor­nell has been formed to in­ves­ti­gate the new NS-FFAG op­tics of this de­sign, built with per­ma­nent mag­nets, and to com­mis­sion the un­prece­dented multi-turn ERL op­er­a­tion. This col­lab­o­ra­tion plans to in­stall a NS-FFAG re­turn loop and the as­so­ci­ated op­tics-match­ing sec­tions at Cor­nell’s one-cry­omod­ule ERL. This FFAG-ERL will be in­stalled in sev­eral stages, each of which in­ves­ti­gates cru­tial parts of this new de­sign.  
slides icon Slides MOPBTH005 [14.410 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUIBLH2024
eRHIC: An Efficient Multi-Pass ERL Based on FFAG Return Arcs  
 
  • S.J. Brooks, J.S. Berg, Y. Hao, V. Litvinenko, C. Liu, F. Méot, M.G. Minty, V. Ptitsyn, T. Roser, P. Thieberger, D. Trbojevic, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
 
  The pro­posed eRHIC elec­tron-hadron col­lider uses a "non-scal­ing FFAG" lat­tice to re­cir­cu­late 16 turns of dif­fer­ent en­ergy through just two beam­lines lo­cated in the RHIC tun­nel. This paper pre­sents lat­tices for these two FFAGs that are op­ti­mised for low mag­net field and to min­imise total syn­chro­tron ra­di­a­tion across the en­ergy range. The higher num­ber of re­cir­cu­la­tions in the FFAG al­lows a shorter linac (1.322GeV) to be used, dras­ti­cally re­duc­ing cost, while still achiev­ing a 21.2GeV max­i­mum en­ergy to col­lide with one of the ex­ist­ing RHIC hadron rings at up to 250GeV. eRHIC uses many cost-sav­ing mea­sures in ad­di­tion to the FFAG: the linac op­er­ates in en­ergy re­cov­ery mode, so the beams also de­cel­er­ate via the same FFAG loops and en­ergy is re­cov­ered from the in­ter­acted beam. All mag­nets will con­structed from NdFeB per­ma­nent mag­net ma­te­r­ial, mean­ing chillers and large mag­net power sup­plies are not needed. This paper also de­scribes a smaller pro­to­type ERL-FFAG ac­cel­er­a­tor that will test all of these tech­nolo­gies in com­bi­na­tion to re­duce tech­ni­cal risk for eRHIC.  
slides icon Slides TUIBLH2024 [1.907 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUIBLH2027 Tracking Studies in eRHIC Energy-Recovery Recirculator 20
 
  • F. Méot, S.J. Brooks, V. Ptitsyn, D. Trbojevic, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
 
  This paper gives a brief overview of var­i­ous beam and spin dy­nam­ics in­ves­ti­ga­tions un­der­taken in the frame­work of the de­sign stud­ies re­gard­ing the FFAG lat­tice based elec­tron en­ergy re­cov­ery re-cir­cu­la­tor ring of the eRHIC elec­tron-ion col­lider pro­ject.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIDLH1002 The Optics of the Low Energy FFAG Cell of the eRHIC Collider Using Realistic Fields 80
 
  • N. Tsoupas, S.J. Brooks, A.K. Jain, G.J. Mahler, F. Méot, V. Ptitsyn, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
  • M. Severance
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by the Department of Energy.
The pro­posed eRHIC [1] ac­cel­er­a­tor ac­cel­er­ates the elec­tron bunches to a max­i­mum en­ergy of 21.2 GeV. This is ac­com­plished by the use of an 1.3 GeV En­ergy Re­cov­ery Linac (ERL) and two FFAG arcs which re­cir­cu­late the elec­tron bunches 16 times through the (ERL) to achieve the top en­ergy of 21.2 GeV to col­lide with the hadron beam. After the in­ter­ac­tion the e-bunches de­cel­er­ate down to in­jec­tion en­ergy of 12 MeV and are sent to the beam dump. In this talk we will dis­cuss the 3D elec­tro­mag­netic field cal­cu­la­tions and the beam op­tics of the low en­ergy FFAG cell using re­al­is­tic field maps ob­tained from the 3d OPERA [2] cal­cu­la­tions.
[1] http://arxiv.org/ftp/arxiv/papers/1409/1409.1633.pdf
[2] Vector Fields Inc.
 
slides icon Slides WEIDLH1002 [2.706 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)