Author: Severance, M.
Paper Title Page
WEIDLH1002 The Optics of the Low Energy FFAG Cell of the eRHIC Collider Using Realistic Fields 80
 
  • N. Tsoupas, S.J. Brooks, A.K. Jain, G.J. Mahler, F. Méot, V. Ptitsyn, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
  • M. Severance
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by the Department of Energy.
The proposed eRHIC [1] accelerator accelerates the electron bunches to a maximum energy of 21.2 GeV. This is accomplished by the use of an 1.3 GeV Energy Recovery Linac (ERL) and two FFAG arcs which recirculate the electron bunches 16 times through the (ERL) to achieve the top energy of 21.2 GeV to collide with the hadron beam. After the interaction the e-bunches decelerate down to injection energy of 12 MeV and are sent to the beam dump. In this talk we will discuss the 3D electromagnetic field calculations and the beam optics of the low energy FFAG cell using realistic field maps obtained from the 3d OPERA [2] calculations.
[1] http://arxiv.org/ftp/arxiv/papers/1409/1409.1633.pdf
[2] Vector Fields Inc.
 
slides icon Slides WEIDLH1002 [2.706 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)