Paper | Title | Page |
---|---|---|
TUOMMH03 | Status Report of SECRAL II Ion Source Development | 94 |
|
||
Funding: Work supported by the 100 Talents Program of the CAS (No. Y214160BR0), NSF (contract No. 11221064) and MOST (contract No. 2014CB845500). For a new injector linac project launched at IMP, a superconducting ECR ion source SECRAL II is now under construction. This ion source is a duplicated one of SECRAL I which is operated routinely for HIRFL facility at the frequency of 18-24 GHz. SECRAL II is designed to be operated at the frequency of 28 GHz, which needs slightly higher radial field at the plasma chamber wall. The fabrication of the cold mass was started at early 2013, and it has been completed in May 2014. The engineering design of the whole superconducting magnet has also been finished and ready for fabrication. After a brief introduction of the recent results obtained with SECRAL I ion source, this paper will present the cold mass test results and the cryogenic system design of SECRAL II magnet. The test bench design will be also discussed. |
||
![]() |
Slides TUOMMH03 [3.782 MB] | |
WEOMMH02 | First Commissioning Results of An Evaporative Cooling Magnet ECRIS-LECR4 | 107 |
|
||
LECR4 (Lanzhou ECR ion source No.4) is a room temperature ECR ion source, designed to produce high current, multiple charge state ions for SSC-linac project at IMP. The ion source has been optimized to be operated at 18 GHz. A unique feature of LECR4 is that all its solenoid coils are fully immersed in a special medium and cooled by evaporative cooling technology when excited. At design current, the coils can produce peak mirror fields on axis 2.3 Tesla at injection, 1.3 Tesla at extraction and 0.5 Tesla at minimum-B. The nominal radial magnetic field is 1.1 Tesla at plasma chamber wall, which is produced by a Halbach structure 36-segment hexapole. Recently, the project has made significant progress. In January 2014, the first plasma at 18 GHz was ignited. During the ongoing commissioning phase with a stainless steel chamber, tests with gaseous ion beams have been conducted. Some intense ion beams have been produced with microwave power less than 1.5 kW, such as 1.97 emA of O6+, 1.7 emA of Ar8+, 1.07 emA of Ar9+, 290 euA of Xe20+ and so on. In this paper, the design of LECR4 ion source will be presented, and the latest test results will also be given. | ||
![]() |
Slides WEOMMH02 [3.543 MB] | |