Author: Mulder, J.
Paper Title Page
MOM2CCO03 Progress towards High Intensity Heavy Ion Beams at the AGOR-Facility 21
 
  • S. Brandenburg, J.P.M. Beijers, M.A. Hevinga, M.A. Hofstee, H.R. Kremers, V. Mironov, J. Mulder, S. Saminathan, A. Sen
    KVI, Groningen, The Netherlands
 
  Funding: This work is supported by the European Union through EURONS, contract 506065 and the "Stichting voor Fundamenteel Onderzoek der Materie" (FOM).
The on-going upgrade program of the AGOR-facility aiming at intensities beyond 1012 pps for heavy ion beams up to Pb will be discussed. The progress in the main elements of the program (further development of the ECR-source; improvement of the transmission into and through the cyclotron and protection of equipment agains excessive beam loss) will be reported. Further improvement of the ECR ion source is facilitated by the installation of a second source. Redesign of the LEBT to compensate aberrations is in progress; simulations predict a significant increase in transmission. A new, cooled electrostatic extractor is being commissioned and the beam loss control system has been completed. The main remaining issue is vacuum degradation induced by beam loss caused by charge exchange on the residual gas. Experiments at GSI[1] have shown that scrapers and surface coatings can strongly reduce this effect. Tracking calculations of the distribution of the beam losses over the vacuum chamber to determine the optimum location of scrapers and application of a gold coating to relevant parts of the vacuum chamber are underway.
[1] C. Omet, H. Kollmus, H. Reich-Sprenger, P. Spiller; Ion catcher system for the stabilisation of the dynamic pressure in SIS18; http://jacow.org/e08/papers/mopc099.pdf
 
slides icon Slides MOM2CCO03 [1.532 MB]  
 
MOPCP053 ECR Ion Source Development at the AGOR Facility 156
 
  • V. Mironov, J.P.M. Beijers, S. Brandenburg, H.R. Kremers, J. Mulder, S. Saminathan
    KVI, Groningen, The Netherlands
 
  Funding: This work is supported by the European Union through EURONS, contract 506065 and the "Stichting voor Fundamenteel Onderzoek der Materie" (FOM).
This paper reports on recent work to improve the performance of the 14 GHz KVI-AECR ion source, which is used as an injector for the AGOR cyclotron. We have installed stainless-steel screens at the injection and extraction sides and an additional collar around the extraction aperture resulting in better plasma stability and an increase of extracted ion currents. Stability and output are also improved by the use of additional RF power at 12 GHz. Source tuning is aided by continuously observing the visible light output of the plasma through the extraction aperture with a ccd camera. We now routinely extract 700 μA of O6+ and 50 μA of Pb27+ ions. Source optimization is supported by extensive computational modeling of the ion transport in the low-energy beam line and measuring the transverse emittance of the extracted ion beam with a pepperpot emittance meter. These efforts have shown that second-order aberrations in the analyzing magnet lead to a significant increase of the effective beam emittance. Work to compensate these aberrations is underway