Progress towards High Intensity Heavy Ion Beams

at the AGOR Facility

Sytze Brandenburg

outline

- physics motivation, objectives
- current status
 - ECR ion source
 - LEBT
 - cyclotron
 - operational safety
- conclusions

AGOR cyclotron

- K600 superconducting cyclotron
 - proton < 190 MeV
 - heavy ions down to 5.5 MeV/A
- beams from proton to Pb

AGOR cyclotron

- K600 superconducting cyclotron
 - proton < 190 MeV
 - heavy ions down to 5.5 MeV/A
- beams from proton to Pb

physics motivation, objectives

- low energy experiments on violation fundamental symmetries
- focus on breaking of time reversal symmetry
 - β v correlation in nuclear β -decay (Na isotopes)
 - permanent electric dipole moments (Ra isotopes)
 - measurements on trapped atoms and ions
- production: heavy ion reactions in inverse kinematics
 - Na-isotopes: Ne-beam @ 20 25 MeV per nucleon
 - Ra-isotopes: Pb-beam @ 7 10 MeV per nucleon
- overall trapping rate: 1 event per 10¹¹ 10¹² beam particles
 beam intensity 10¹² 10¹³ pps needed for production phase

current status

- beam intensities achieved
 - ${}^{20}Ne^{6+}$ @23.3 MeV/nucleon 1.3 x 10¹³ pps P = 1 kW
 - ${}^{206}Pb^{27+} @ 7 10 MeV/nucleon 3 \times 10^{11} pps P = 100 W$

ECRIS

- 14 GHz AECR-type source cf. LBNL, JYFL
 - aluminium plasma chamber
 - open hexapole structure
- dual frequency heating
 - 14 GHz up to 2 kW
 - 11 12.5 GHz (variable frequency) up to 400 W,
- modifications plasma chamber
 - stainless steel plasma electrode + collar-
 - stainless steel biased disk

poster MOPCP53

ECRIS

- optical diagnostics
 - CCD camera viewing plasma
 - low depth of field optics
 scan over depth
 - very useful for tuning (stability)

- ¹⁶O⁶⁺ 500 μA
- ²⁰Ne⁶⁺ 500
- ²⁰⁶Pb²⁷⁺

500 μA 50 μA

current, mA

ECRIS

- installed SUPERNANOGAN at location polarized source
 - AECR dedicated for metal beams
 - ➡ more output.....

rijksuniversiteit groningen

LEBT ion optics

- ECRIS analysing magnet
 - acceptance too small ➡ 30 % beam loss
 - large higher order aberrations ➡ 50 % beam loss transfer line
 - simulation \leftrightarrow experiment: semi-quantitative agreement

LEBT ion optics

- ECRIS analysing magnet
 - acceptance too small ➡ 30 % beam loss
 - large higher order aberrations ➡ 50 % beam loss transfer line
 - simulation \leftrightarrow experiment: semi-quantitative agreement

LEBT ion optics

- ECRIS analysing magnet
 - acceptance too small ➡ 30 % beam loss
 - large higher order aberrations ➡ 50 % beam loss transfer line
 - simulation \leftrightarrow experiment: semi-quantitative agreement
 - no space for separate hexapoles
 - magnet redesign
 - increased acceptance
 - reduced aberrations
 - similar LBNL

LEBT vacuum

- beam line ECR cyclotron
 - turbomolecular + ion getter pumps
 - length 20 m, average pressure $\sim 2 \times 10^{-8}$ mbar
 - transmission 90 % for ²⁰⁶Pb²⁷⁺
- vertical injection beam line
 - turbomolecular pump at bottom
 - little conductance in cyclotron center
 - length 5 m, average pressure $\sim 5 \times 10^{-7}$ mbar
 - transmission ~ 50 % for ²⁰⁶Pb²⁷⁺
- work to be done
 - high magnetic field
 no pumps with moving parts
 - NEG-pumps under investigation
- for lighter ions (Ne, Ar) overall transmission ~90 %

basics transmission understood

- high intensity: beam loss induced desorption
 degradation vacuum and transmission
 different pressure distribution in cyclotron
 - limiting factor for increase intensity Pb-beams
- modelling + experiment
 - particle tracking after charge exchange
 spatial distribution + angle of incidence

- high intensity: beam loss induced desorption
 degradation vacuum and transmission
 different pressure distribution in cyclotron
 - limiting factor for increase intensity Pb-beams
- modelling + experiment

o/ICCA2010/16

- particle tracking after charge exchange
 spatial distribution + angle of incidence
- desorption yield vs. angle of incidence

- high intensity: beam loss induced desorption
 degradation vacuum and transmission
 different pressure distribution in cyclotron
 - limiting factor for increase intensity Pb-beams

simplified geometry

- modelling + experiment
 - particle tracking after charge exchange
 spatial distribution + angle of incidence
 - desorption yield vs. angle of incidence
 - 3D modelling pressure distribution
 - pumps
 - "normal" outgassing
 - beam induced desorption

- possibilities for mitigation
 - pumping in most regions conductance limited
 - reduction outgassing (= base pressure) not very effective
 - reduction beam induced desorption effective

- possibilities for mitigation
 - pumping in most regions conductance limited
 - reduction outgassing (= base pressure) not very effective
 - reduction desorption effective
 - gold coating median plane ➡ factor 10 (GSI)

- scrapers (increase angle of incidence) ➡ factor 4 (GSI)
 - in preparation

cyclotron extraction

- new electrostatic deflector
 - cooling septum and cathode

cyclotron extraction

- new electrostatic deflector
 - cooling septum and cathode
 - pre-septum

cyclotron extraction

- new electrostatic deflector
 - cooling septum and cathode
 - pre-septum
 - assembly stage`

universiteit ingen

beam loss control

- power density in material up to 1 kW/mm³
 damage at 10 ms scale
 beam loss control system essential
- modular system to measure beam losses
- variable duty cycle chopper to control intensity

poster MOPCP87

rijksuniversiteit

groningen

conclusions

- ²⁰Ne @ 23.4 MeV/nucleon 10¹³ pps, 1 kW beam demonstrated
 - technical improvements for routine operation nearly completed
- 206 Pb @ 7 10 MeV/nucleon 3 x 10¹¹ pps, 100 W demonstrated
 - factor \geq 3 increase needed
 - several on-going improvements
 - ion optics LEBT
 - vacuum LEBT
 - desorption cyclotron
 - ➡ feasible

ie nank P

Carl Con