Author: Lee, J.C.
Paper Title Page
TUPPT004 The Development of Control System for 9 MeV Cyclotron 159
  • Y.S. Lee, J.-S. Chai, S.Y. Jung, H.S. Kim, H.W. Kim, S.H. Kim, J.C. Lee, S.H. Lee, J.K. Park, S. Shin, H.S. Song, Y.H. Yeon
    SKKU, Suwon, Republic of Korea
  • K.-H. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
  The Sungkyunkwan University has developed the 9 MeV cyclotron for producing radio isotopes. In order to operate the cyclotron stably, all sub-systems in the cyclotron are controlled and monitored consistently. Therefore, each sub-system includes control devices, which is developed based on PLC, or DSP chip and the sub control modules interface with main control system in real time. As main control system, we choose the CompactRIO system from NI (National Instrument) to take into account the latency and robust control. The control system has high-performance processor running real-time OS, so that the system can control the cyclotron fast and exactly. In addition, the system can be remotely accessed over the network to monitor the status of cyclotron easily. The configuration of control system for 9 MeV cyclotron and performance test result will be described in this paper.  
TUPPT029 Design Study of a 83.2 MHz RF Cavity for the 9 MeV Compact Cyclotron 215
  • S. Shin, J.-S. Chai, J.C. Lee
    SKKU, Suwon, Republic of Korea
  • B.N. Lee
    KAERI, Daejon, Republic of Korea
  Funding: National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2010-0025953)
A compact cyclotron accelerating H ion for producing a radioactive isotope FDG (FluoroDeoxyGlucose) for PET (Positron Emission Tomography) has been designed at Sungkyunkwan University. The H ion which generated from the PIG (Panning Ion Gauge) ion source will be accelerated at the normal conducting RF cavity which uses 83.2 MHz of resonance frequency and extracted at the carbon foil striper at the energy of 9 MeV. This cyclotron has to be small to install local hospital while FDG production needs more than 9 MeV of proton beam energy. Chasing two hare at once, deep valley type of magnet has been selected for high energy and compact cyclotron. Due to the small size of valley space where RF cavities will be installed, lots of difficulties have been introduced. Despite of those difficulties at the designing process, we could achieve resonance frequency of 83.2 MHz and Q-factor of 4500 with very compact size of RF cavity.