Author: Zvyagintsev, V.
Paper Title Page
MOPVA087 Low Betta Superconducting Cavity for the New Injector Linac for Nuclotron-NICA 1058
 
  • M. Gusarova, T.A. Bakhareva, M.V. Lalayan, S.V. Matsievskiy, N.P. Sobenin, D.V. Surkov, K.V. Taletskiy, V. Zvyagintsev
    MEPhI, Moscow, Russia
  • A.A. Bakinowskaya, V.S. Petrakovsky, A.I. Pokrovsky, D.A. Shparla
    Physical-Technical Institute of the National Academy of Sciences of Belarus, Minsk, Belarus
  • A.V. Butenko, G.V. Trubnikov
    JINR/VBLHEP, Dubna, Moscow region, Russia
  • V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  The results of the RF, mechanical and multipactor discharge simulations of the 162 MHz quarter wave resonator (QWR) for New Superconducting Injector Linac for Nuclotron-NICA are presented. Cavity design in conjunction with manufacturing features is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA014 Status of R&D on New Superconducting Injector Linac for Nuclotron-NICA 3282
 
  • G.V. Trubnikov, A.V. Butenko, N. Emelianov, A.O. Sidorin, E. Syresin
    JINR, Dubna, Moscow Region, Russia
  • T.A. Bakhareva, M. Gusarova, T. Kulevoy, S.V. Matsievskiy, S.M. Polozov, A.V. Samoshin, N.P. Sobenin, D.V. Surkov, K.V. Taletskiy, S.E. Toporkov, V. Zvyagintsev
    MEPhI, Moscow, Russia
  • A.A. Bakinowskaya, A.A. Marysheva, V.S. Petrakovsky, I.L. Pobol, A.I. Pokrovsky, D.A. Shparla, S.V. Yurevich, V.G. Zaleski
    Physical-Technical Institute of the National Academy of Sciences of Belarus, Minsk, Belarus
  • M.A. Baturitski, S.A. Maksimenko
    INP BSU, Minsk, Belarus
  • S.E. Demyanov
    Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus, Minsk, Belarus
  • V.A. Karpovich
    BSU, Minsk, Belarus
  • T. Kulevoy, S.M. Polozov
    ITEP, Moscow, Russia
  • A.A. Kurayev, V.V. Matbeenko, A.O. Rak
    Belarus State University of Informatics and Radioelectronics (BSUIR), Minsk, Belarus
  • V.N. Rodionova
    Belarussian State University, Scientific Research Institute of Nuclear Problems, Minsk, Belarus
  • A.O. Sidorin
    Saint Petersburg State University, Saint Petersburg, Russia
  • V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  The new collaboration of JINR, NRNU MEPhI, INP BSU, PTI NASB, BSUIR and SPMRC NASB starts in 2015 the project of linac-injector design in 2015. The goal of new linac is to accelerate protons up to 25 MeV (and up to 50 MeV at the second stage) and light ions to ~7.5 MeV/u for Nuclotron-NICA injection. Current results of the linac general design and development, beam dynamics simulations, SC cavities design and SRF technology development are presented in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB022 TRIUMF ARIEL e-Linac Ready for 30 MeV 1361
 
  • S.R. Koscielniak, Z.T. Ang, K. Fong, J.J. Keir, O.K. Kester, M.P. Laverty, R.E. Laxdal, Y. Ma, A.K. Mitra, T. Planche, D.W. Storey, E. Thoeng, B.S. Waraich, Z.Y. Yao, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  Funding: TRIUMF is funded under a contribution agreement with the National Research Council of Canada.
The ARIEL electron linac (e-linac) in its present configuration has a 10 mA electron gun and a single-cavity 10 MeV injector cryomodule followed by the accelerator cryomodule intended to house two 10-MeV-capable SRF cavities. There are momentum analysis stations at 10 MeV and 30 MeV. In October 2014, using a total of two cavities, the e-linac demonstrated 22.9 MeV acceleration. In 2017 an additional SRF cavity was installed in the accelerator cryomodule, thereby completing its design specification; and leading to 30 MeV acceleration capability. The 9-cell 1.3 GHz cavities are a variant of the TESLA type, modified for c.w. operation and recirculation. An unusual feature of the module is the power feed of two cavities by one klystron through a wave-guide type power divider, and closed loop control of the combined voltage from the cavities. Initial operation of the two-cavity control, including power and phase balancing, is reported.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB023 Commissioning of the 10MeV Electron Injector Cryomodule for VECC at TRIUMF 1365
 
  • R.E. Laxdal, Y. Ma, R.R. Nagimov, D.W. Storey, E. Thoeng, Z.Y. Yao, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
  • U. Bhunia, A. Chakrabarti, S. Dechoudhury, V. Naik
    VECC, Kolkata, India
 
  TRIUMF (Vancouver) and VECC (Kolkata) have been engaged in a collaboration on superconducting electron linacs since 2008. The motivation for the collaboration was to support initiatives at both labs, ARIEL at TRIUMF and ANURIB at VECC, to augment the respective radioactive ion beam (RIB) programs with the addition of a high intensity electron linac driver to produce RIBs through photo-fission. The common linac architecture is based on five 1.3GHz nine-cell SRF cavities housed in three cryomodules; a single cavity injector (ICM) and a pair of two cavity accelerating modules (ACM). Final design goals are 50MeV and 10mA/3mA at TRIUMF/VECC respectively. A ARIEL e-linac demonstrator with two cold cavities in two modules successfully accelerated beam to 20MeV. Recently the VECC 10MeV injector cryomodule was commissioned with beam. A summary of the ICM design and results of the commissioning will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK003 Novel RF Structure for Energy Matching into an RFQ 4111
 
  • V. Zvyagintsev, Z.T. Ang, T. Au, N.V. Avreline, J.J. Keir, R.E. Laxdal, M. Marchetto, B.S. Waraich
    TRIUMF, Vancouver, Canada
  • A. Cote
    UBC, Vancouver, Canada
 
  Funding: National Research Council of Canada
The ISAC RFQ at TRIUMF is designed to accelerate ions with A/q<=30 and requires an ion injection energy of 2.04 keV/u (β=0.002) for successful matching. This means that the ions (typically radioactive ions produced via the ISOL method) have to be extracted from a source at a terminal voltage in excess of 60 kV. Presently the ISAC target modules cannot hold more than 54 kV (and some lower than this) so that some of the higher masses cannot be successfully accelerated. A small 3-gap RF structure at 11.8 MHz has been designed to provide an energy matching to the RFQ. The structure operates in pi-mode and provides a maximum effective accelerating voltage of 16 kV to the low energy ions. Beam dynamics considerations, RF and mechanical design will be described. First results of RF tests of the structure will be given.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)