Author: Zanoni, C.
Paper Title Page
MOPVA096 The Crab Cavities Cryomodule for SPS Test 1081
 
  • C. Zanoni, A. Amorim Carvalho, K. Artoos, S. Atieh, K. Brodzinski, R. Calaga, O. Capatina, T. Capelli, F. Carra, L. Dassa, T. Dijoud, K. Eiler, G. Favre, P. Freijedo Menendez, M. Garlaschè, L. Giordanino, S.A.E. Langeslag, R. Leuxe, H. Mainaud Durand, P. Minginette, M. Narduzzi, V. Rude, M. Sosin, J.S. Swieszek
    CERN, Geneva, Switzerland
  • T.J. Jones, N. Templeton
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  RF Crab Cavities are an essential part of the HL-LHC upgrade. Two concepts of such systems are being developed: the Double Quarter Wave (DQW) and the RF Dipole (RFD). A cryomodule with two DQW cavities is in advanced fabrication stage at CERN for their tests with protons in the SPS during the 2018 run. The cavities must be operated at 2 K, without excessive heat loads, in a low magnetic environment and in compliance with CERN safety guidelines on pressure and vacuum systems. A large set of components, such as a thermal shield, a two layers magnetic shield, RF lines, helium tank and tuner is required for the successful and safe operation of the cavities. The assembly of all these components with the cavities and their couplers forms the cryomodule. An overview of the design and fabrication strategy of this cryomodule is presented. The main components are described along with the present status of cavity fabrication and processing and cryomodule assembly. The lesson learned from the prototypes, the helium tank above all, and first manufactured systems is also included.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA008 Assessment of Thermal Loads in the CERN SPS Crab Cavities Cryomodule 2047
 
  • F. Carra, J. Apeland, R. Calaga, O. Capatina, T. Capelli, C. Zanoni
    CERN, Geneva, Switzerland
  • S. Verdú-Andrés
    BNL, Upton, Long Island, New York, USA
 
  Funding: *Work supported by the European Union HL-LHC Project and by US DOE through Brookhaven Science Associates LLC under contract No. DE-AC02-98CH10886 and the US LHC Accelerator Research Program (LARP). Research supported by the HL-LHC project.
As a part of the HL-LHC upgrade, a cryomodule is designed to host two crab cavities for a first test with protons in the SPS machine. The evaluation of the cryomodule heat loads is essential to dimension the cryogenic infrastructure of the system. The current design features two cryogenic circuits. The first circuit adopts superfluid helium at 2 K to maintain the cavities in the superconducting state. The second circuit, based on helium gas at a temperature between 50 K and 70 K, is connected to the thermal screen, also serving as heat intercept for all the interfaces between the cold mass and the external environment. An overview of the heat loads to both circuits, and the combined numerical and analytical estimations, is presented. The heat load of each element is detailed for the static and dynamic scenarios, with considerations on the design choices for the thermal optimization of the most critical components.
#Federico.carra@cern.ch
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA115 Progress with Long-Range Beam-Beam Compensation Studies for High Luminosity LHC 2358
 
  • A. Rossi, O. Aberle, J. Albertone, A. Bertarelli, C.B. Boccard, F. Carra, G. Cattenoz, Y. Delaup, S.D. Fartoukh, G. Gobbi, J. Lendaro, Y. Papaphilippou, D. Perini, S. Redaelli, H. Schmickler, C. Zanoni
    CERN, Geneva, Switzerland
  • A.M. Barnyakov, A.E. Levichev, D.A. Nikiforov
    BINP SB RAS, Novosibirsk, Russia
  • M. Fitterer, A.S. Patapenka, G. Stancari, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Long-range beam-beam (LRBB) interactions can be a source of emittance growth and beam losses in the LHC during physics and will become even more relevant with the smaller '* and higher bunch intensities foreseen for the High Luminosity LHC upgrade (HL-LHC), in particular if operated without crab cavities. Both beam losses and emittance growth could be mitigated by compensat-ing the non-linear LRBB kick with a correctly placed current carrying wire. Such a compensation scheme is currently being studied in the LHC through a demonstration test using current-bearing wires embedded into col-limator jaws, installed either side of the high luminosity interaction regions. For HL-LHC two options are considered, a current-bearing wire as for the demonstrator, or electron lenses, as the ideal distance between the particle beam and compensating current may be too small to allow the use of solid materials. This paper reports on the ongoing activities for both options, covering the progress of the wire-in-jaw collimators, the foreseen LRBB experiments at the LHC, and first considerations for the design of the electron lenses to ultimately replace material wires for HL-LHC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA117 Preliminary Mechanical Design Study of the Hollow Electron Lens for HL-LHC 3547
 
  • C. Zanoni, G. Gobbi, D. Perini
    CERN, Geneva, Switzerland
  • G. Stancari
    Fermilab, Batavia, Illinois, USA
 
  A Hollow Electron Lens has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field generated by a set of solenoids. Mechanical design and integration require a preliminary knowledge of the optimal configuration of the solenoids that drive the electron trajectories. The estimation of such trajectories by means of a dedicated Matlab tool is presented. The influence of the main geometrical and electrical parameters is analysed and discussed. The main mechanical design choices are also outlined along with the concept of the electron collector. The aim of this paper is to provide an overview of the feasibility study of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar devices.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)