Author: van Riesen-Haupt, L.
Paper Title Page
TUPVA037 FCC-hh Final-Focus for Flat-Beams: Parameters and Energy Deposition Studies 2139
 
  • J.L. Abelleira, E. Cruz Alaniz, A. Seryi, L. van Riesen-Haupt
    JAI, Oxford, United Kingdom
  • M.I. Besana
    CERN, Geneva, Switzerland
 
  Funding: The European Circular Energy-Frontier Collider Study (EuroCirCol), EU's Horizon 2020 grant No 654305.
The international Future Circular Collider (FCC) study comprises the study of a new scientific structure in a tunnel of 100 km. This will allow the installation of two accelerators, a 45.6'175 GeV lepton collider and a 100-TeV hadron collider. An optimized design of a final-focus system for the hadron collider is presented here. The new design is more compact and enables unequal β* in both planes, whose choice is justified here. This is followed by energy deposition studies, where the total dose in the magnets as a consequence of the collision debris is evaluated.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA039 Effect of Alignment Errors and Orbit Correctors on the Interaction Region of the FCC-hh 2147
 
  • E. Cruz Alaniz, J.L. Abelleira, A. Seryi, L. van Riesen-Haupt
    JAI, Oxford, United Kingdom
  • J.L. Abelleira, L. van Riesen-Haupt
    University of Oxford, Oxford, United Kingdom
 
  Funding: European Union's Horizon 2020 research and innovation programme under grant No 654305.
The Future Circular Collider (FCC) design study aims to develop the design of possible circular colliders in the LHC era. In particular the FCC-hh will aim to produce proton-proton collisions at a center of mass energy of 100 TeV. The interaction region has been designed to meet the requirements in terms of energy and luminosity. However, as it is the case in any real accelerator, misalignments in the magnets are likely to occur; the effect of these misalignments, if not properly compensated for, can jeopardize the performance of the machine. This study contemplates alignment and field errors in the interaction region in order to estimate the tolerance necessary to provide a good correction measured in terms of deviation of the orbit and strength of the correctors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA040 Overview of Design Development of FCC-hh Experimental Interaction Regions 2151
 
  • A. Seryi, J.L. Abelleira, E. Cruz Alaniz, L.J. Nevay, L. van Riesen-Haupt
    JAI, Oxford, United Kingdom
  • R.B. Appleby, H. Rafique
    UMAN, Manchester, United Kingdom
  • R.B. Appleby
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J. Barranco García, T. Pieloni
    EPFL, Lausanne, Switzerland
  • M. Benedikt, M.I. Besana, X. Buffat, H. Burkhardt, F. Cerutti, A. Langner, R. Martin, W. Riegler, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
  • M. Boscolo, F. Collamati
    INFN/LNF, Frascati (Roma), Italy
  • M. Hofer
    TU Vienna, Wien, Austria
  • L.J. Nevay
    Royal Holloway, University of London, Surrey, United Kingdom
  • L. van Riesen-Haupt
    University of Oxford, Oxford, United Kingdom
 
  The experimental interaction region is one of the key areas that define the performance of the Future Circular Collider. In this overview we will describe the status and the evolution of the design of EIR of FCC-hh, focusing on design of the optics, energy deposition in EIR elements, beam-beam effects and machine detector interface issues.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA041 Exploring the Triplet Parameter Space to Optimise the Final Focus of the FCC-hh 2155
 
  • L. van Riesen-Haupt, J.L. Abelleira, E. Cruz Alaniz, A. Seryi
    JAI, Oxford, United Kingdom
 
  One of the main challenges when designing final focus systems of particle accelerators is maximising the beam stay clear in the strong quadrupole magnets of the inner triplet. Moreover it is desirable to keep the quadrupoles in the inner triplet as short as possible for space and costs reasons but also to reduce chromaticity and simplify corrections schemes. An algorithm that explores the triplet parameter space to optimise both these aspects was written. It uses thin lenses as a first approximation and MADX for more precise calculations. In cooperation with radiation studies, this algorithm was then applied to design an alternative triplet for the final focus of the Future Circular Collider.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA042 K-Modulation Developments via Simultaneous Beam Based Alignment in the LHC 2159
 
  • L. van Riesen-Haupt, A. Seryi
    JAI, Oxford, United Kingdom
  • J.M. Coello de Portugal, E. Fol, R. Tomás, R. Tomás
    CERN, Geneva, Switzerland
 
  Funding: EuroCirCol
A parasitic effect of k-modulation is that if the modulated quadrupole has an offset the modulation results in a dipole like kick forcing the beam on a new orbit. This paper presents a new method using the orthonormality of singular value decomposition that uses this new orbit to estimate the offset. This could be used to measure misalignments or crossing angles but could also help improve k-modulation \beta measurements by predicting the parasitic tune change caused by the new orbit not passing through the centre of the sextupoles.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA043 A Code for Optimising Triplet Layout 2163
 
  • L. van Riesen-Haupt, J.L. Abelleira, E. Cruz Alaniz, A. Seryi
    JAI, Oxford, United Kingdom
 
  Funding: EuroCirCol
One of the main challenges when designing final focus systems of particle accelerators is maximising the beam stay clear in the strong quadrupole magnets of the inner triplet. Moreover it is desirable to keep the quadrupoles in the inner triplet as short as possible for space and costs reasons but also to reduce chromaticity and simplify corrections schemes. An algorithm that explores the triplet parameter space to optimise both these aspects was written. It uses thin lenses as a first approximation for a broad parameter scan and MADX for more precise calculations. The thin lens algorithm is significantly faster than a full scan using MADX and relatively precise at indicating the approximate area where the optimum solution lies.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB130 Cross-Calibration of the LHC Transverse Beam-Profile Monitors 437
 
  • R. Alemany-Fernández, F. Alessio, A. Alexopoulos, C. Barschel, F.S. Carlier, J.M. Coello de Portugal, M. Ferro-Luzzi, A. Garcia-Tabares, M. Hostettler, O. Karacheban, E.H. Maclean, R. Matev, T. Persson, P.K. Skowroński, R. Tomás, G. Trad, S. Vlachos, B. Würkner
    CERN, Geneva, Switzerland
  • G.R. Coombs
    EPFL, Lausanne, Switzerland
  • T.B. Hadavizadeh
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • M. Hofer
    TU Vienna, Wien, Austria
  • L. van Riesen-Haupt
    University of Oxford, Oxford, United Kingdom
 
  Calibration of a transverse beam profile monitor is of fundamental importance to guarantee the best possible accuracy and reliability of the instrument over time. In LHC the calibration standard for transverse-profile measurements are the wire scanners. Other profile monitors such as beam synchrotron light telescopes and interferometers are calibrated with respect to them. Additional information about single-bunch sizes can be obtained from beam-gas imaging in the LHCb vertex detector, from the transverse convolved beam sizes extracted from luminosity scans at the collision points, and from the evolution of the luminous-region parameters as reconstructed by ATLAS and CMS inner tracker detectors during such scans. For the first time in LHC, a dedicated cross-calibration of all the above-mentioned systems was carried out with beam in 2016. Additionally, dedicated optics measurements were also performed in order to determine with the highest possible accuracy the amplitude function at the interaction points and at the position of the profile monitors. Results of these measurements are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB130  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)