Author: Urakawa, J.
Paper Title Page
MOPAB128 The Design of a Non-Destructive Single-Shot Longitudinal Bunch Profile Monitor using Smith-Purcell Radiation 433
 
  • H. Harrison, G. Doucas, I.V. Konoplev, A.J. Lancaster, H. Zhang
    JAI, Oxford, United Kingdom
  • A. Aryshev, M. Shevelev, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
 
  Funding: This work was supported by the: the STFC UK, the Leverhulme Trust, the JAI (University of Oxford) and the Photon and Quantum Basic Research Coordinated Development (Japan).
The conceptual design for a single-shot longitudinal bunch profile monitor using coherent Smith-Purcell radiation (cSPr) has recently been completed. The exploitation of the directionality and the polarization of cSPr to reduce the length of the monitor and to eliminate background radiation are discussed. The linear polarization of cSPr will be used to separate the signal from background radiation and experiments to test this design will be presented. Alongside the conceptual design an investigation to optimize the number of detection channels needed to produce high quality longitudinal bunch profile reconstructions has been carried out. It has been determined that the number of detection channels can be reduced compared to previous experiments if measurement uncertainty and background radiation are minimized effectively.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB128  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK009 Characterization of Cold Model Cavity for Cryocooled C-Band 2.6-Cell Photocathode RF Gun at 20 K 518
 
  • T. Tanaka, K. Hayakawa, Y. Hayakawa, K. Nakao, K. Nogami, T. Sakai, K. Takatsuka
    LEBRA, Funabashi, Japan
  • M.K. Fukuda, D. Satoh, T. Takatomi, N. Terunuma, J. Urakawa, M. Yoshida
    KEK, Ibaraki, Japan
 
  Funding: This work was partly supported by the Photon and Quantum Basic Research Coordinated Development Program of the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT).
A cryocooled C-band 2.6-cell photocathode RF electron gun has been studied at Nihon University in cooperation with KEK. The cold model cavity with an input coupler was completed in spring 2016. The RF characteristics measured at room temperature were in agreement with the prediction by the CST Studio simulation. The RF characteristics at 20 K have been measured using a rather simple cavity-cooling vacuum system that was built by using existing components for tentative experiments. A thin-wall stainless-steel R48 waveguide with copper-plated inner walls has been used for the RF power transmission from the room-temperature input port to the 20-K cooled coupler waveguide. The unloaded Q-value of 73000 has been obtained by the reflection coefficient measurement at 20 K, which is in agreement with the result of the CST Studio simulation using the cavity surface resistance predicted by the theory of the anomalous skin effect.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA023 Luminosity Increase in Laser-Compton Scattering by Crab Crossing Method 902
 
  • Y. Koshiba, D. Igarashi, S. Ota, T. Takahashi, M. Washio
    RISE, Tokyo, Japan
  • K. Sakaue
    Waseda University, Waseda Institute for Advanced Study, Tokyo, Japan
  • J. Urakawa
    KEK, Ibaraki, Japan
 
  In collider experiments such as KEKB, crab crossing method is a promising way to increase the luminosity. We are planning to apply crab crossing to laser-Compton scattering, which is a collision of electron beam and laser, to gain a higher luminosity leading to a higher flux X-ray source. It is well known that the collision angle between electron beam and laser affects the luminosity. It is the best when the collision angle is zero, head-on collision, to get a higher luminosity but difficult to construct such system especially when using an optical cavity for laser. Concerning this difficulty, we are planning crab crossing by tilting the electron beam using an rf-deflector. Although crab crossing in laser-Compton scattering has been already proposed*, nowhere has demonstrated yet. We are going to demonstrate and conduct experimental study at our compact accelerator system in Waseda University. In this conference, we will report about our compact accelerator system, laser system for laser-Compton scattering, and expected results of crab crossing laser-Compton scattering.
*Variola Alessandro, et al. Luminosity optimization schemes in Compton experiments based on Fabry-Perot optical resonators. Physical Review Special Topics-Accelerators and Beams 14.3 (2011): 031001.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA024 Investigation of the Coherent Cherenkov Radiation Using Tilted Electron Bunch 905
 
  • K. Sakaue
    Waseda University, Waseda Institute for Advanced Study, Tokyo, Japan
  • M. Brameld, M. Nishida, T. Toida, M. Washio, R. Yanagisawa
    Waseda University, Tokyo, Japan
  • R. Kuroda, Y. Taira
    AIST, Tsukuba, Ibaraki, Japan
  • J. Urakawa
    KEK, Ibaraki, Japan
 
  Funding: This work was supported by a research granted from The Murata Science Foundation and JSPS KAKENHI 26286083.
Cherenkov radiation can be produced when the velocity of the charged particles are faster than the light in some medium. We investigated the coherent Cherenkov radiation using electron bunch tilting for matching the wave front of the Cherenkov radiation. The electron bunch was tilted by using rf transverse deflecting cavity. We tested several materials for the Cherenkov target which has enough transmittance at the wavelength of THz region. As a result, high peak power THz was achieved using this novel technique. We will report the principle of this technique, the experimental results and future prospects at the conference.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB060 Development of the Laser System for the Proof-of-Principle Experiment of Crab Crossing Laser-Compton Scattering 1460
 
  • T. Takahashi, D. Igarashi, Y. Koshiba, S. Ota, M. Washio
    RISE, Tokyo, Japan
  • K. Sakaue
    Waseda University, Waseda Institute for Advanced Study, Tokyo, Japan
  • J. Urakawa
    KEK, Ibaraki, Japan
 
  An X-ray source via laser-Compton scattering has the advantage of small source, energy tunability and quasi-monochromaticity and is expected to be applied in a wide range of fields such as the industry and medical care. In laser-Compton scattering, the luminosity, which represents the collision frequency between the electrons and the photons, is very important. Increasing the luminosity is strongly required for increasing the scattered photon flux. One way to increase the luminosity is tilting electron bunches at the collision point, which is called crab crossing. It is the way to create the head-on collision artificially. The purpose of this study is the proof-of-principle of the crab crossing laser-Compton scattering. In this conference, we will report the design optimization and construction of the laser system for the collision and future prospects.
Variola Alessandro, et al. Luminosity optimization schemes in Compton experiments based on Fabry-Perot optical resonators. Physical Review Special Topics-Accelerators and Beams 14.3 (2011): 031001.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA018 Drive-Witness Acceleration Scheme Based on Corrugated Dielectric mm-Scale Capillary 3292
 
  • K. Lekomtsev, S.T. Boogert, P. Karataev, A. Lyapin
    JAI, Egham, Surrey, United Kingdom
  • A. Aryshev, M. Shevelev, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • A.A. Tishchenko
    MEPhI, Moscow, Russia
 
  Funding: This project has received funding from the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 655179.
In this paper, we investigate a corrugated mm-scale capillary as a compact accelerating structure in a drive-witness acceleration scheme, and suggest a methodology to measure acceleration of a witness bunch. Two typical measurements and the energy gain in a witness bunch as a function of the distance between bunches are discussed. A corrugated capillary is considered as an accelerator/decelerator with an adjustable wakefield pattern depending on a transverse beam position.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOAB3
Ultrafast Relativistic-Energy Electron Microscopy  
 
  • J. Yang, K. Kan, T. Kondoh, K. Tanimura, Y. Yoshida
    ISIR, Osaka, Japan
  • N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
 
  An ultrafast electron microscopy (UEM) using a relativistic-energy femtosecond-pulse electron beam has being developed at Osaka University. We succeeded to generate a 100-fs-pulse electron beam with energy of 3.1 MeV using a photocathode RF gun. In the demonstrations of UEM, we succeeded to observe the TEM imaging of polystyrene and gold nanoparticles by the accumulating measurement of 3.1-MeV femtosecond electron pulses. The relativistic-energy single-pulse electron imaging is also available under the low-magnification observation, i.e. 300 times. The UEM has also been succeeded for the study of the ultrafast structural dynamics in materials with the single-shot electron diffraction observation.  
slides icon Slides THOAB3 [12.396 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA141 Non-Destructive Measurement of Electron Microbunch Separation 4798
SUSPSIK122   use link to see paper's listing under its alternate paper code  
 
  • H. Zhang, G. Doucas, H. Harrison, I.V. Konoplev, A.J. Lancaster
    JAI, Oxford, United Kingdom
  • A. Aryshev, M. Shevelev, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
 
  With the development of femtosecond lasers, the generation of micro-bunched beams directly from a photocathode becomes routine; however, the monitoring of the separation is still a challenge. We present the results of proof-of-principle experiments measuring the distance between two bunches via the amplitude modulation analysis of a monochromatic radiation signal. Good agreement with theoretical prediction is shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA141  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)