Author: Tygier, S.C.
Paper Title Page
MOPAB013 Recent Development and Results With the Merlin Tracking Code 104
 
  • S.C. Tygier, R.B. Appleby, H. Rafique
    UMAN, Manchester, United Kingdom
  • R.J. Barlow, S. Rowan
    IIAA, Huddersfield, United Kingdom
  • J. Molson
    LAL, Orsay, France
 
  Funding: Work supported by High Luminosity LHC : UK (HL-LHC-UK), grant number ST/N001621/1
MERLIN is an high performance accelerator simulation code which is used for modelling the collimation system at the LHC. It is written in extensible object-oriented C++ so new physics processes can be easily added. In this article we present recent developments needed for the Hi-Lumi LHC and future high energy colliders including FCC, such as hollow electron lenses and composite materials. We also give an overview of recent simulation work, validation against LHC data from run 1 and 2, and loss maps for Hi-Lumi LHC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK122 The Beam Optics of the FFAG Cell of the CBETA ERL Accelerator 820
 
  • N. Tsoupas, J.S. Berg, S.J. Brooks, G.J. Mahler, F. Méot, V. Ptitsyn, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
  • J.A. Crittenden
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • S.C. Tygier
    UMAN, Manchester, United Kingdom
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The CBETA project[*] is a prototype electron accelerator for the proposed eRHIC project[**]. The electron accelerator is based on the Energy Recovery Linac (ERL) and the Fixed Field Alternating Gradient (FFAG) principles. The FFAG arcs and the straight section of the accelerator are comprised of one focusing and one defocusing quadrupoles which are designed as Halbach-type permanent dipole magnets with quadrupoles component[***]. We will present the beam optics of the FFAG cell which is based on 3D field maps derived with the use of the OPERA computer code[****]. We will also present the electromagnetic design of the corrector magnets of the cell.
* http://arxiv.org/abs/1504.00588
** http://arxiv.org/ftp/arxiv/papers/1409/1409.1633.pdf
*** K. Halbach, Nucl. Instrum. Meth. 169 (1980) pp. 1-10
**** http://www.scientificcomputing.com
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK122  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK123 Beam Dynamics Numerical Studies Regarding CBETA Cornell-BNL ERL 824
 
  • F. Méot, S.J. Brooks, D. Trbojevic, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
  • S.C. Tygier
    UMAN, Manchester, United Kingdom
 
  Funding: Work supported by New York State Energy Research and Development Authority (NYSERDA)
The Cornell-BNL Electron Test Accelerator CBETA is based on a 36 MeV superconducting linac and on a single 4-pass up/4-pass down linear FFAG return loop, for beam acceleration from 6 to 150 MeV and energy recovery. Numerical beam dynamics simulations have accompanied and eventually validated the quadrupole-doublet FFAG cell technology and parameters, and following that the complete return loop, all along the ERL lattice design process. They are key to assessing and validating the ERL optics and beam behavior over the whole acceleration/ER cycle, and in preparing future machine operation. This paper presents various of these beam dynamics studies, including start-to-end simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBA1 A Comparison of Interaction Physics for Proton Collimation Systems in Current Simulation Tools 2478
 
  • J. Molson, A. Faus-Golfe
    LAL, Orsay, France
  • R.B. Appleby, S.C. Tygier
    UMAN, Manchester, United Kingdom
  • R.J. Barlow
    IIAA, Huddersfield, United Kingdom
  • R. Bruce, F. Cerutti, A. Ferrari, A. Mereghetti, S. Redaelli, K.N. Sjobak, V. Vlachoudis
    CERN, Geneva, Switzerland
  • H. Rafique
    University of Manchester, Manchester, United Kingdom
  • Y. Zou
    IHEP, Beijing, People's Republic of China
 
  Funding: The European Circular Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 654305.
High performance collimation systems are required for current and proposed high energy hadron accelerators in order to protect superconducting magnets and experiments. In order to ensure that the collimation system designs are sufficient and will operate as expected, precision simulation tools are required. This paper discusses the current status of existing collimation system tools, and performs a comparison between codes in order to ensure that the simulated interaction physics between a proton and a collimator jaw is accurate.
 
slides icon Slides WEOBA1 [7.235 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEOBA1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB058 PyZgoubi Simulations of the CBETA Lattice 3847
 
  • S.C. Tygier
    UMAN, Manchester, United Kingdom
  • C.E. Mayes
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • F. Méot, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by New York State Energy Research and Development Authority (NYSERDA)
The Cornell-BNL Electron Test Accelerator CBETA is a 4 pass up, 4 pass down energy recovery linac using Fixed-Field Alternating-Gradient (FFAG) recirculation arcs with a top energy of 150 MeV. We present lattice implemented in the tracking code pyZgoubi, with both hard edge and field map magnet versions. We also describe the recent developments in pyZgoubi such as importing lattice tables from other tracking codes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)