Author: Tambasco, C.
Paper Title Page
TUPVA025 Observations of Beam Losses at the LHC During Reduction of Crossing Angle 2105
 
  • B. Salvachua, X. Buffat, A.A. Gorzawski, T. Pieloni, S. Redaelli, C. Tambasco, J. Wenninger
    CERN, Geneva, Switzerland
  • J. Barranco García, A.A. Gorzawski
    EPFL, Lausanne, Switzerland
  • M.P. Crouch
    UMAN, Manchester, United Kingdom
 
  Several machine development studies have been performed in 2016 at the LHC in order to evaluate the effects of reducing the crossing angles in favor of defining the maximum achievable luminosity in the ATLAS and CMS experiments. At the end of the LHC proton-proton run at 6.5TeV the reduction of the crossing angle from 185urad to 140urad was operationally implemented. The observation of beam losses and lifetimes during this process are analysed and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA026 Beam-Beam Studies for FCC-hh 2109
 
  • J. Barranco García, T. Pieloni, C. Tambasco
    EPFL, Lausanne, Switzerland
  • X. Buffat, S.V. Furuseth, C. Tambasco
    CERN, Geneva, Switzerland
  • S.V. Furuseth
    NTNU, Trondheim, Norway
 
  Funding: This works was performed in the framework of the European Circular 'Energy Fr'ontier Collider Study, H2020 Framework Programme under grant agreement no. 654305. We acknowledge support from the Swiss State Secretariat for Education, Research and Innovation SERI.
The Future Circular Collider hadron-hadron (FCC-hh) design study is currently exploring different IR design possibilities including round and flat optics or different crossing schemes. The present study intends to evaluate each scenario from the beam-beam effects point of view. In particular the single particle long term stability to maximize beam lifetimes and luminosity reach is used to quantify the differences. The impact of strong head on interactions on the beam quality and lifetime is addressed by means of GPU accelerated simulations code featuring a weak-strong 6-dimensional beam-beam interaction.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA027 Study of Beam-Beam Long Range Compensation with Octupoles 2113
 
  • T. Pieloni, J. Barranco García, C. Tambasco
    EPFL, Lausanne, Switzerland
  • X. Buffat, C. Tambasco
    CERN, Geneva, Switzerland
 
  Funding: The European Circular Energy-Frontier Collider Study (EuroCirCol), EU's Horizon 2020 grant No 654305.
Long range beam-beam effects are responsible for particle losses and define fundamental operational parameters of colliders (i.e. crossing angles, intensities, emittances, β*). In this study we propose octuple magnets as a possible scheme to efficiently compensate long-range beam-beam interactions with a global correction scheme. The impact and improvements on the dynamic aperture of colliding beams together with estimates of the luminosity potentials are discussed for the HL-LHC upgrade and extrapolations made for the FCC project. Results are compared to other compensating schemes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA029 Observations of Emittance Growth in the Presence of External Noise in the LHC 2117
 
  • X. Buffat, C. Tambasco, D. Valuch
    CERN, Geneva, Switzerland
  • J. Barranco García, T. Pieloni, C. Tambasco
    EPFL, Lausanne, Switzerland
 
  Dedicated experiments were perfomed in the LHC to study the impact of noise on colliding high brightness beams. The results are compared to theoretical models and multiparticle tracking simulations. The impacts on the LHC operation and the HL-LHC project are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA031 Impact of Incoherent Effects on the Landau Stability Diagram at the LHC 2125
 
  • C. Tambasco, J. Barranco García, X. Buffat, T. Pieloni
    CERN, Geneva, Switzerland
  • J. Barranco García, X. Buffat, T. Pieloni
    EPFL, Lausanne, Switzerland
 
  Instability thresholds are explored at the Large Hadron Collider (LHC) by means of the computation of the Landau Stability Diagrams (SD). In the presence of diffusive mechanisms, caused by resonance excitations or noise, the SD can be reduced due to the modification of the particle distribution inside the beam. This effect can lead to a possible lack of Landau damping of the coherent modes previously damped by lying within the unperturbed SD area. The limitations deriving from coherent instabilities in the LHC is crucial in view of future projects that aim to increase the performance of the LHC such as the High-Luminosity upgrade (HL-LHC). Simulation tools for the computation of the SD have been extended in order to take into account the incoherent effects from long tracking through the detailed model of the accelerator machine. The model includes among others beam-beam interactions and octupoles and the interplay between both is addressed. Finally the simulation results are compared to the Beam Transfer Function (BTF) measurements in the LHC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB056 Dynamic Aperture Studies of the Long-Range Beam-Beam Interaction at the LHC 3840
 
  • M.P. Crouch, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • J. Barranco García, T. Pieloni, C. Tambasco
    EPFL, Lausanne, Switzerland
  • X. Buffat, M. Giovannozzi, E.H. Maclean
    CERN, Geneva, Switzerland
  • B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Long-range beam-beam interactions dictate the choice of operational parameters for the LHC, such as the crossing angle and β* and therefore the luminosity reach for the collider. These effects can lead to particle losses, closed orbit effects and emittance growth. Defining how these effects depend on the beam-beam separation will determine the minimum crossing angle and the β* the LHC can operate. In this article, analysis from a dedicated machine study is presented in which the crossing angle was reduced in steps and the impact on beam intensity and luminosity lifetimes were observed. Based on the observations during the machine study, the intensity decays are compared to expectations from models. Estimates of the luminosity reach in the LHC are also computed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)