Author: Schmidt, F.
Paper Title Page
WEXB1 Studies and Observations of Beam Dynamics Near a Sum Resonance 2503
 
  • G. Franchetti
    GSI, Darmstadt, Germany
  • S.S. Gilardoni, A. Huschauer, F. Schmidt, R. Wasef
    CERN, Geneva, Switzerland
 
  The effect of space charge on bunches stored for long term in a can be severe for beam survival. This may be the case in projects as SIS100 at GSI or LIU at CERN. In the past decade systematic simulation studies and experiments performed at CERN and GSI have highlighted the space charge induced periodic crossing of “one dimensional” resonances as the underlying mechanism of long term beam loss or emittance growth. However only in 2012, for the first time, the effect of space charge on a normal third order coupled resonance was investigated at the CERN-PS. The experimental results have highlighted an unprecedented asymmetric beam response where in the horizontal plane the beam exhibits a thick halo, whereas the vertical profile has only core growth. The quest for explaining these results requires a journey thorough the 4 dimensional dynamics of the coupled resonance investigating the fix-lines, and requires a detailed code-experiment benchmarking also including beam profile benchmarking. This study shows that the experimental results of the 2012 PS measurements can be explained by the dynamics the fixed lines also including the effect of the dispersion.  
slides icon Slides WEXB1 [18.195 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEXB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA037 Machine Development Studies in the CERN PS Booster, in 2016 3339
 
  • E. Benedetto, S.C.P. Albright, M.E. Angoletta, W. Bartmann, J.M. Belleman, A. Blas, M. Cieslak-Kowalska, G.P. Di Giovanni, A. Findlay, V. Forte, A. Garcia-Tabares, G. Guidoboni, S. Hancock, M. Jaussi, B. Mikulec, J.C. Molendijk, A. Oeftiger, T.L. Rijoff, F. Schmidt, P. Zisopoulos
    CERN, Geneva, Switzerland
  • M. Cieslak-Kowalska
    EPFL, Lausanne, Switzerland
  • P. Zisopoulos
    Uppsala University, Uppsala, Sweden
 
  The paper presents the outstanding studies performed in 2016 in preparation of the PS Booster upgrade, within the LHC Injector Upgrade project (LIU), to provide twice higher brightness and intensity to the High-Luminosity LHC. Major changes include the increase of injection and extraction energy, the implementation of a H charge-exchange injection system, the replacement of the present Main Power Supply and the deployment of a new RF system (and related Low-Level), based on the Finemet technology. Although the major improvements will be visible only after the upgrade, the present machine can already benefit of the work done, in terms of better brightness, transmission and improved reproducibility of the present operational beams. Studies address the space-charge limitations at low energy, for which a detailed optics model is needed and for which mitigation measurements are under study, and the blow-up reduction at injection in the downstream machine, for which the beams need careful preparation and transmission. Moreover they address the requirements and the reliability of new beam instrumentation and hardware that is being installed in view of LIU.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)