

Space Charge Effects on the Third Order Coupled Resonance

Giuliano Franchetti, GSI

S. Gilardoni, A. Huschauer, F. Schmidt, R. Wasef, CERN

IPAC 2017, Kopenhagen

Acknowledgments

GSI	O. Choriny, W. Bayer, O. Boine-Frankenheim, C. Omet, B. Franczak, P. Forck, T. Giacomini, I. Hofmann, F. Kesting, M. Kirk, H. Kollmus, T. Mohite, A. Parfenova, P. Schuett, P. Spiller
CERN	H. Bartosik, E. Benedetto, C. Carli, R. Cappi, M. Giovannozzi, S. Gilardoni, A. Huschauer, M. Martini, E. Metral, R. Steerenberg, G. Rumolo, F. Schmidt, R. Wasef, F. Zimmermann
ITEP	P. Zenkevich, A.Bolshakov, V. Kapin
Univ. Loughborough	A.I. Neishtadt
Univ. Bologna	G. Turchetti, C. Benedetti, A. Bazzani

Overview

The case for accelerators and projects Space charge effect in nonlinear rings One dimensional resonances The coupled resonances Experiment and simulations **Conclusion / Outlook**

Motivation: the FAIR project

Motivation: the FAIR project

FAIR @ IPAC 2017

		•••	
	GSI		
	Winfried A. Barth - TUPVA055 Further Investigations for a Superconducting	g cw-LINAC at GSI	
	Lars Bozyk - TUPVA056 Ionization Loss and Dynamic Vacuum in He	avy Ion Synchrotrons	
	Stephanie Deveaux - MOPIK127 FAIR Risk Management as a Proactive Stee	ering Tool for the Large Scale Multi Project	
	Manuel Heilmann - MOPVA054 High Power RF Coupler for the CW-Linac E	Demonstrator at GSI	
	Manuel Heilmann - TUPVA057 Design Study for a Prototype Alvarez-Cavity	r for the Upgraded Unilac	
	Egbert Fischer - WEOCB2 Superconducting Magnets at FAIR		
	Michael Frey - THPIK015 Prototype Results of the ESR Barrier-Bucket	System	
	Carl M. Kleffner - TUPVA058 The Status of the FAIR pLinac		
6	Harald Klingbeil - THPIK016 Status of the SIS100 RF Systems		
	Sergio Mauro - THPIK017 Field Uniformity Preservation Strategies for th	ne ESS DTL: Approach and Simulations	
	Carsten Omet - WEPVA029 SIS100 Tunnel Design and Status		
8	David Ondreka - TUPVA059 Overcoming the Space Charge Limit: Deve	lopment of an Electron Lens for SIS18	
1	Thomas Reichert - MOPAB034 SIS-100 BPM System: Design and Realiza	tion	
X-A	Stephan Reimann - THPAB096 Automatized Optimization of Beam Lines U	sing Evolutionary Algorithms	
1	Anna Rubin - THPVA003 Status of the Beam Dynamics Design of the	e New Post-Stripper DTL for GSI-FAIR	
ST	Mariusz Sapinski - TUPVA060 Upgrade of GSI Hades Beamline in Prepara	tion for High Intensity Run	
Web	Marcus Schwickert - MOPAB035 Status of Beam Diagnostics for SIS100Ber	nd	
applie	Robert Schlei - TUPIK045 Closed Orbit Feedback for FAIR - Prototype	Tests at SIS18	
	Peter J. Spiller - WEPVA030 FAIR SIS100 - Features and Status of Rea	alisation	
LYAL	Ralph Jeffrey Steinhagen - TUPIK046 Beam-Based Feedbacks for FAIR - Prototype	ing at the SIS18	
Minday	Markus Vossberg - TUPIK047 FAIR Control Centre (FCC) - Concepts and	Interim Options for the Existing GSI Main Control Room	
It was the	Natalya Winters - MOPIK128 Integrated Project Planning as a Central S	teering Tool for the Large Scale Multi Project FAIR	
	Stepan Yaramyshev - TUPVA061 Beam Dynamics Study for the HIM&GSI H	eavy lon sc cw-Linac	
	TUD		
	Alexander Andreev - THPAB097 Phase Calibration of Synchrotron RF Sign	als	
	Jens Harzheim - WEPVA047 Input Signal Generation for Barrier Bucke	t RF Systems at GSI	eters:
	Erika Kazantseva - WEPAB026 SUSPSIK049 BRho-Dependent Taylor Tr	ansfer Maps for Super-FRS Dipole Magnets	
	Benjamin Frederic Reichardt - TUPIK048 Longitudinal Beam Stabilization at FAIR	by Means of a Derivative Estimation	
	Thibault Ferrand - THPVA041 Progress in the Bunch-to-Bucket Transfer	Implementation for FAIR	
	Herbert De Gersem - THPIK018 Simulating Cross-Magnetization Effects in	Combined-Function Accelerator Magnets	
	Kerstin Gross - THPAB098 Test Setup for Automated Barrier Bucket	Signal Generation	
	Nicolai Schweizer - THPVA042 Modular Robot for Visual Inspection of th	e Vacuum Beamline of a Particle Accelerator	
	William Stem - THPVA004 Pushing the Space Charge Limit:Electron	Lenses in High-Intensity Synchrotrons?	
	Dinu Mihailescu Stoica - THPAB100 On the Impact of Empty Buckets on the F	errite Cavity Control Loop Dynamics in High Intensity Hadron Synchrotrons	
	IAP-Frankfurt		
	Ali Mohammad Almomani - TUPVA064 Updated Cavities Design for the FAIR p-L	inac	
	Markus Baschke - TUPAB147 The Final RF-Design of the 36 MHz-HSI-	RFQ-Upgrade at GSI	N / -) / /· ·
	Daniel Koser - THPIK021 SUSPSIK091 Structural Mechanical Analy	sis of 4-Rod RFQ Structures in View of a Newly Revised CW RFQ for the	wev/u
	HLI at GSI		
	ITEP		
	Sergey Markovich Polozov - TUPAB013 Beam Dynamics Study and Electrodynam	nics Simulations for the CW RFQ	

G. Franchetti

GSI Anschluss FAIR

G. Franchetti

FAIR stage	Today	Stage 0 (Existing Facility after upgrade)	Stage 1 (Existing Facility supplies Super FRS, CR, [HESR])	Stage 2 (SIS100 Booster)
Reference Ion	U ⁷³⁺	U ⁷³⁺	U ⁷³⁺	U ²⁸⁺
Maximum Energy	1 GeV/u	1 GeV/u	1 GeV/u	0.2 GeV/u
Maximum Intensity	4x10 ⁹	2x10 ¹⁰	2x10 ¹⁰	1.5x10 ¹¹
Repetition Rate	0.3 - 1 Hz	1 Hz	1 Hz	2.7 Hz

Accelerator case

High intensity bunch stored for many turns

Accelerator case

High intensity bunch stored for many turns

Particles subject to Space charge

Space charge tune-shift Amplitude dependent detuning

> Structure resonances Collective effects impedances

Particles are subject to the nonlinear motion

Error and structure resonances Dynamic aperture

Chromatic effects

Single particle nonlinear dynamics

G. Guignard, CERN 78-11, (1978); A. Bazzani et al., CERN94-02 (1994).

G. Franchetti

Space charge vs. magnets force

The space charge limit

Tolerable space charge tune-shift in order not to overlap with resonances

If resonances are too many, or the incoherent tune-shift is too large there is always a resonance overlapping

What happens if space charge tune-spread overlaps a resonance?

Example: Coasting beam and 1D resonance

Intrepretation

Interpretation

Above the resonance: Large stable 3rd order islands are created

G. Franchetti

The quest of the incoherent effects of space charge

GSI Helmholtzzentrum für Schwerionenforschung GmbH

G. Franchetti

17.05.2017 14

1D third order resonance

Bunched beam at high intensity

Large emittance growth

The bunch is shorter !

M. Kirk, T. Mohite, C. Omet, A. Parfenova, P. Schuett Phys. Rev. ST Accel. Beams 13, 114203 (2010).

GSI Helmholtzzentrum für Schwerionenforschung GmbH

G. Franchetti

Space charge and resonances

1D resonance and space charge Summary (2000 – 2010)

G. Franchetti

The difficulty of the coupled dynamics

G. Franchetti

G. Franchetti

TABLE	I.	Beam	and	machine	parameters.
-------	----	------	-----	---------	-------------

Parameter	Value		
Intensity N_p [10 ¹⁰ p]	55		
Normalized horizontal rms emittance ε_x^n [mm mrad]	3.6		
Normalized vertical rms emittance ε_y^n [mm mrad]			
Rms bunch length σ_t [ns]	33		
Rms momentum spread $\frac{\Delta p}{p}$ [10 ⁻³]	0.95		
Horizontal maximum tune spread $\Delta Q_{x,\max}^{\mathrm{a}}$	-0.05		
Vertical maximum tune spread $\Delta Q_{y,\max}^{a}$	-0.071		
Sextupole current I_{SX} [A]	2		
Harmonic number h	8		
RF voltage $V_{\rm RF}$ [kV]	20.5		
Horizontal linear chromaticity $\xi_x^{\rm b}$	-0.83		
Vertical linear chromaticity $\xi_y^{\rm b}$	-1.12		
Energy of stored beam [GeV]	2		
Turns stored	497646		
Storage time [s]	1.1		
Relativistic β	0.948		
Relativistic γ	3.14		
Synchrotron tune	1163^{-1}		
Horizontal flying w. (SS68 at 422.8 m) β_x [m]	12.40		
Vertical flying w. (SS64 at 397.7 m) $\beta_y~[\rm m]$	21.75		

^a The tune spread is calculated according to Ref. [18].

^b
$$\xi_{x,y} = \frac{Q'_{x,y}}{Q_{x,y}} = \frac{\Delta Q_{x,y}/Q_{x,y}}{\Delta p/p}$$

6.15

Horizontal tune

6.2

6.25

6.3

6.1

6.0

6.05

PS campaign results

Comparison with simulations

Experiment-Code Beam Profile benchmarking $Q_{x0} = 6.104$

No space charge

Distance of the resonance

 $\Delta_{r0} = Q_{x0} + 2Q_{y0} - 19$

With space charge

G. Franchetti

Distance from the resonance for one particle at amplitudes X,Y

$$\Delta_r = \Delta_{r0} + \Delta Q_{sc,x}(X,Y) + 2\Delta Q_{sc,y}(X,Y)$$

$$\Delta_{r0}~$$
 may be different from zero

Resonance condition
$$\Delta_r = 0$$

Resonance condition $\Delta_{r0} = 0$

Resonant particles

Comparison with simulations without chromaticity

Comparison with simulations without chromaticity

Comparison with simulations including chromaticity

Comparison with simulations including chromaticity

GSI Helmholtzzentrum für Schwerionenforschung GmbH

17.05.2017 31

Missing: the coupled dynamics on the resonance

F. Schmidt PhD thesis, and others

G. Franchetti and F. Schmidt Phys. Rev. Lett. **114**, 234801 (2015).

G. Franchetti and F. Schmidt http://arxiv.org/abs/1504.04389

SPS campaign on May 2015

longitudinal motion is kept frozen, so to retrieve Poincare' section orbits

Largest resonant orbits at $z/\sigma_z=0$

Largest resonant orbits at $z/\sigma_z = 1/2$

Periodic crossing of fixed-lines

Periodic crossing of fixed-lines

Prediction of the halo size: the adiabatic limit

$$x = \sqrt{eta_x a_x} \cos(-2t - lpha + \pi M)$$

 $y = \sqrt{eta_y a_y} \cos(t)$

For adiabatic synchrotron motion all particles trapped are transported to the "same" fixed-line

The sizes of this fixed-line characterize the halo/core formation

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Conclusion / Outlook

- A successful experiment-code benchmarking of the beam dynamics on the 3rd order coupled resonance is carried out for the full PS structure.
- Outstanding asymmetric halo is formed well retrieved by the simulations
- Thinking in terms of resonance detuning leads paradoxes
- The "fixed-lines" or tori are the new objects that explain the dynamics of diffusion in a high intensity bunch subject to a coupled resonance
- "Fixed lines" are experimentally measured in the SPS
- Simulations show that the periodic crossing of the fixed-lines causes the asymmetric halo as result of fixed lines geometry.
- Particle seems to diffuse to "**one**" fixed-line → adiabatic limit
- The doors are open for massive studies of all coupled resonances and space charge
- → Strategies to mitigate particle diffusion

GSI Helmholtzzentrum für Schwerionenforschung GmbH G. Franchetti

Outlook

Open problems:

- Estimating the diffusion time
- Mitigation strategies:
 - Resonance compensation
 E-lenses ?
- Coherent vs. incoherent...

SPACE CHARGE 2017

Chairs: O.Boine-Frankenheim, G. Franchetti Secretary: <u>P. Lindenberg</u> 4-6 October 2017, TUD, Darmstadt

International Advisory Committee 🔛

M. Bai GSI B. Beaudoin UMD Y.-Ho Chin KEK I. Hofmann TUDa/GSI J. Holmes ORNL A. Lombardi CERN D.-O Jeon IBS S. Machida RAL F. Schmidt CERN J-L. Vay LBNL S. Webb Radiasoft H. Zhao MACHINE

https://indico.gsi.de/conferenceDisplay.py?confld=5600

Simulations: the effect of chromaticity

How do we understand the puzzle ?

Something is missing!

Resonant orbits

The difficulty of the coupled dynamics

Near the resonance $3 Q_x = 13 Q_x = 4.335$, $Q_y = 3.27$

X – Y coupling

Modes of oscillation

Space charge vs. magnet force

Space charge detuning

For a Gaussian $\Delta Q_x = -\frac{R^2}{Q_x} \frac{K}{2} \frac{1}{\sqrt{\tilde{\epsilon}_x \langle \beta_x \rangle_s} (\sqrt{\tilde{\epsilon}_x \langle \beta_x \rangle_s} + \sqrt{\tilde{\epsilon}_y \langle \beta_y \rangle_s})}$

GSI Helmholtzzentrum für Schwerionenforschung GmbH

17.05.2017

Lattice induced resonances

Lattice induced nonlinear resonances

$$n_x Q_{x0} + n_y Q_{y0} = m$$

G. Guignard, CERN 78-11, (1978); A. Bazzani et al., CERN94-02 (1994). **Resonant dynamics**

Resonance driving terms

A combination of optics, and Magnets strength

$$\kappa = \frac{1}{2\pi (2R)^{(N/2)} |n_{x}|! |n_{z}|!} \int_{0}^{2\pi} d\theta \ \beta_{x}^{|n_{x}|/2} \ \beta_{z}^{|n_{z}|/2} \times \\ \times \exp \left\{ i \left[n_{x} \mu_{x}^{+} n_{z} \mu_{z}^{-} (n_{x} Q_{x}^{+} n_{z} Q_{z}^{-} p) \theta \right] \right\} \begin{cases} (-1)^{(|n_{z}|+2)/2} \ K_{z}^{(N-1)} & \text{for } n_{z} \text{ even} \\ (-1)^{(|n_{z}|-1)/2} \ K_{x}^{(N-1)} & \text{for } n_{z} \text{ odd} \end{cases}$$

Magnets nonlinearities drives resonances

G. Franchetti

