Author: Jamison, S.P.
Paper Title Page
THPAB053 Laser Heater Deisgn for the CLARA FEL Test Facility 3833
 
  • A.D. Brynes, S.P. Jamison, B.D. Muratori, N. Thompson, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • S.P. Jamison, B.D. Muratori, N. Thompson, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  We present considerations of microbunching studies in the CLARA (Compact Linear Accelerator for Research and Applications), the proposed UK FEL test facility under construction at Daresbury Laboratory. CLARA, a high-brightness electron linac, presents an opportunity to study the microbunching instability. A number of theoretical models have been proposed concerning the causes of this instability, and it has also been observed at various FEL facilities. We have applied these models to the CLARA FEL, and propose a suitable laser heater design which will provide flexibility in terms of the range of modes of operation for CLARA. We also propose a method for inducing and controlling the microbunching instability via pulse stacking of the photoinjector laser.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA019 Group Velocity Matching in Dielectric-Lined Waveguides and its Role in Electron-THz Interaction 3296
SUSPSIK031   use link to see paper's listing under its alternate paper code  
 
  • A.L. Healy, G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • D.M. Graham
    The University of Manchester, The Photon Science Institute, Manchester, United Kingdom
  • S.P. Jamison
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Terahertz(THz)-driven dielectric-lined waveguides have applications in electron manipulation, particularly acceleration, as the use of dielectric allows for phase velocities below the speed of light. However matching a single frequency to the correct velocity does not maximise electron-THz interaction; waveguide dispersion typically results in an unmatched group velocity and so the pulse envelope of a short THz pulse changes along the length of the structure. This reduces field amplitude and therefore accelerating gradient as the envelope propagates at a different velocity to the electron. Presented here is an analysis of the effect of waveguide dispersion on THz-electron interaction and its influence on structure dimensions and choice of THz pulse generation. This effect on net acceleration is demonstrated via an example of a structure excited by a single-cycle THz pulse, with a comparison of multi-cycle, lower intensity THz pulses on net acceleration.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)