Author: Berg, J.S.
Paper Title Page
MOPIK122 The Beam Optics of the FFAG Cell of the CBETA ERL Accelerator 820
 
  • N. Tsoupas, J.S. Berg, S.J. Brooks, G.J. Mahler, F. Méot, V. Ptitsyn, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
  • J.A. Crittenden
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • S.C. Tygier
    UMAN, Manchester, United Kingdom
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The CBETA project[*] is a prototype electron accelerator for the proposed eRHIC project[**]. The electron accelerator is based on the Energy Recovery Linac (ERL) and the Fixed Field Alternating Gradient (FFAG) principles. The FFAG arcs and the straight section of the accelerator are comprised of one focusing and one defocusing quadrupoles which are designed as Halbach-type permanent dipole magnets with quadrupoles component[***]. We will present the beam optics of the FFAG cell which is based on 3D field maps derived with the use of the OPERA computer code[****]. We will also present the electromagnetic design of the corrector magnets of the cell.
* http://arxiv.org/abs/1504.00588
** http://arxiv.org/ftp/arxiv/papers/1409/1409.1633.pdf
*** K. Halbach, Nucl. Instrum. Meth. 169 (1980) pp. 1-10
**** http://www.scientificcomputing.com
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK122  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOCB3 CBETA - Cornell University Brookhaven National Laboratory Electron Energy Recovery Test Accelerator 1285
 
  • D. Trbojevic, S. Bellavia, J.S. Berg, M. Blaskiewicz, S.J. Brooks, K.A. Brown, W. Fischer, F.X. Karl, C. Liu, G.J. Mahler, F. Méot, R.J. Michnoff, M.G. Minty, S. Peggs, V. Ptitsyn, T. Roser, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, F.J. Willeke, H. Witte
    BNL, Upton, Long Island, New York, USA
  • N. Banerjee, J. Barley, A.C. Bartnik, I.V. Bazarov, D.C. Burke, J.A. Crittenden, L. Cultrera, J. Dobbins, B.M. Dunham, R.G. Eichhorn, S.J. Full, F. Furuta, R.E. Gallagher, M. Ge, B.K. Heltsley, G.H. Hoffstaetter, R.P.K. Kaplan, V.O. Kostroun, Y. Li, M. Liepe, W. Lou, C.E. Mayes, J.R. Patterson, P. Quigley, D.M. Sabol, D. Sagan, J. Sears, C.H. Shore, E.N. Smith, K.W. Smolenski, V. Veshcherevich, D. Widger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    JLab, Newport News, Virginia, USA
  • D. Jusic, J.R. Patterson
    Cornell University, Ithaca, New York, USA
 
  Funding: New York State Energy Research and Development Authority (NYSERDA)
Cornell's Lab of Accelerator-based Sciences and Education (CLASSE) and the Collider Accelerator Department (BNL-CAD) are developing the first SRF multi-turn energy recovery linac with Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) racetrack. The existing injector and superconducting linac at Cornell University are installed together with a single NS-FFAG arcs and straight section at the opposite side of the the linac to form an Electron Energy Recovery (ERL) system. Electron beam from the 6 MeV injector is injected into the 36 MeV superconducting linac, and accelerated by four successive passes: from 42 MeV up to 150 MeV using the same NS-FFAG structure made of permanent magnets. After the maximum energy of 150 MeV is reached, the electron beam is brought back to the linac with opposite Radio Frequency (RF) phase. Energy is recovered and reduced to the initial value of 6 MeV with 4 additional passes. There are many novelties: a single NS-FFAG structure, made of permanent magnets, brings electrons with four different energies back to the linac. A new adiabatic NS-FFAG arc-to-straight section merges 4 separated orbits into a single orbit in the straight section.
 
slides icon Slides TUOCB3 [41.888 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOCB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK130 A Permanent Magnet Quadrupole Magnet for CBETA 2016
 
  • H. Witte, J.S. Berg, J. Cintorino, G.J. Mahler, N. Tsoupas, P. Wanderer
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Recently a collaboration between Brookhaven National Laboratory and Cornell University was established, aiming to build the CBETA accelerator. CBETA is a 150 MeV electron test accelerator, which prototypes essential technologies of eRHIC, which is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory. Similar to eRHIC, CBETA employs an FFAG lattice for the arcs. The arcs require short, large aperture quadrupole magnets, which are located close together. BNL has been working on a design employing permanent magnets; we show the concept and the engineering design of these magnets. Prototype magnets have been constructed recently; we report on magnetic field quality measurements and their agreement with computer simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK130  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK049 Overview of the eRHIC Ring-Ring Design 3035
 
  • C. Montag, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, J.M. Brennan, A.V. Fedotov, W. Fischer, W. Guo, Y. Hao, A. Hershcovitch, Y. Luo, F. Méot, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, S. Seletskiy, T.V. Shaftan, V.V. Smaluk, S. Tepikian, D. Trbojevic, E. Wang, F.J. Willeke, H. Witte, Q. Wu
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The ring-ring electron-ion collider eRHIC aims at an electron-ion luminosity in the range from 1032 to 1033cm-2sec-1 over a center-of-mass energy range from 20 to 140GeV. To minimize the technical risk the design is based on existing technologies and beam parameters that have already been achieved routinely in hadron-hadron collisions at RHIC, and in electron-positron collisions elsewhere. This design has evolved considerably over the last two years, and a high level of maturity has been achieved. We will present the latest design status and give an overview of studies towards evaluating the feasibility.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB090 Algorithm to Calculate Off-Plane Magnetic Field From an on-Plane Field Map 3928
 
  • N. Tsoupas, J.S. Berg, F. Méot, V. Ptitsyn, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
  • S.A. Kahn
    Muons, Inc, Illinois, USA
  • S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We present an algorithm to calculate the off-plane components of the magnetic field from the on-plane components of the magnetic field which are measured on a grid of the plane. The algorithm, which is a general one and it is not restricted on a mid-plane symmetry, is based on the Taylor series expansion of the magnetic field components in terms of the normal to the plane location. The coefficients of the Taylor series expansion are expressed in terms of the on-plane derivatives of the field components which are generated by the measured magnetic field components on the grid of the plane. The algorithm is use in the RATRACE computer code[*] and has been used[**] on a dipole magnet with median plane symmetry.
* S.B. Kowalski and H.A. Enge The Ion-Optical Program Raytrace NIM A258 (1987) 407
** N. Tsoupas et. al. Effects of Dipole Magnet Inhomogeneity on the Beam Ellipsoid NIM A258 (1987) 421-425
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA151 Halbach Magnets for CBETA and eRHIC 4814
 
  • H. Witte, J.S. Berg, B. Parker
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
At Brookhaven National Laboratory two design efforts are underway: eRHIC and CBETA. eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC), which would allow collisions of up to 21 GeV polarized electrons with protons or heavy ions. CBETA is a 150 MeV electron accelerator, aiming to demonstrate essential technology necessary for eRHIC. Both machines employ FFAG arcs and are designated to use permanent magnet material for the required quadrupole magnets. One proposed design is a Halbach magnet; this paper investigates the feasibility of this approach.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA151  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)