Author: Plath, T.
Paper Title Page
MOP018 Conceptual Study of a Self-seeding Scheme at FLASH2 53
 
  • T. Plath, L.L. Lazzarino
    Uni HH, Hamburg, Germany
  • K.E. Hacker
    DELTA, Dortmund, Germany
 
  Funding: Supported by Federal Ministry of Education and Research of Germany under contract No. 05K1GU4 and 05K10PE1 and the German Research Foundation program graduate school 1355.
We present a conceptual study of a self-seeding installation at the new FEL beamline, FLASH2, at the free-electron laser at DESY, Hamburg. For self-seeding, light from a first set of undulators is filtered by a monochromator and thus acts as a seed for the gain process in the main undulator. This scheme has been tested at LCLS at SLAC with a diamond monochromator for hard X-rays and with a grating monochromator for soft X-rays covering energies between 700 and 1000 eV. For such a design to offer benefits at FLASH2, it must be modified to work with X-rays with wavelength of about 5 nm (248 eV) where the damage threshold of the monochromator in the setup and the divergence at longer wavelengths become an issue. An analysis of the potential performance and limitations of this setup is performed using GENESIS 1.3 and a method developed for the soft X-ray self-seeding experiment at the European XFEL. With a total of 9 undulators in the first stage and 8 undulators after the monochromator, a pulse energy contrast ratio of 4.5 was simulated with an initial peak current of 2.5 kA.
 
 
MOP060 Demonstration of SASE Suppression Through a Seeded Microbunching Instability 177
 
  • C. Lechner, A. Azima, M. Drescher, L.L. Lazzarino, Th. Maltezopoulos, V. Miltchev, T. Plath, J. Rönsch-Schulenburg, J. Roßbach
    Uni HH, Hamburg, Germany
  • S. Ackermann, J. Bödewadt, G. Brenner, M. Dohlus, N. Ekanayake, T. Golz, E. Hass, K. Honkavaara, T. Laarmann, T. Limberg, E. Schneidmiller, N. Stojanovic, M.V. Yurkov
    DESY, Hamburg, Germany
  • K.E. Hacker, S. Khan, R. Molo
    DELTA, Dortmund, Germany
 
  Funding: Supported by Federal Ministry of Education and Research of Germany under contract No. 05K10PE1, 05K10PE3, 05K13GU4, and 05K13PE3 and the German Research Foundation programme graduate school 1355.
Collective effects and instabilities due to longitudinal space charge and coherent synchrotron radiation can degrade the quality of the ultra-relativistic, high-brilliance electron bunches needed for the operation of free-electron lasers. In this contribution, we demonstrate the application of a laser-induced microbunching instability to selectively suppress the SASE process. A significant decrease of photon pulse energies was observed at the free-electron laser FLASH in coincidence with overlap of 800 nm laser pulses and electron bunches within a modulator located approximately 40 meters upstream of the undulators. We discuss the underlying mechanisms based on longitudinal space charge amplification [E.A. Schneidmiller and M.V. Yurkov, Phys. Rev. ST Accel. Beams 13, 110701 (2010)] and present measurements.
 
 
MOP083 Start-to-End Simulation for FLASH2 HGHG Option 244
 
  • G. Feng, S. Ackermann, J. Bödewadt, W. Decking, M. Dohlus, Y.A. Kot, T. Limberg, M. Scholz, I. Zagorodnov
    DESY, Hamburg, Germany
  • K.E. Hacker
    DELTA, Dortmund, Germany
  • T. Plath
    Uni HH, Hamburg, Germany
 
  The Free-electron laser in Hamburg (FLASH) is the first FEL user facility to have produced extreme ultraviolet (XUV) and soft X-ray photons. In order to increase the beam time delivered to users, a major upgrade of FLASH named FLASH II is in progress. The electron beamline of FLASH2 consists of diagnostic and matching sections, a seeding undulator section and a SASE undulator section. In this paper, results from a start-to-end simulation for a FLASH2 High-Gain Harmonic Generation (HGHG) option are presented. For the beam dynamics simulation, space charge, coherent synchrotron radiation (CSR) and longitudinal cavity wake field effects are taken into account. In order to get electron beam bunches with small correlated and uncorrelated energy spread, RF parameters of the accelerating modules have been optimized as well as the parameters of the bunch compressors. Radiation simulations for the modulator and the radiator have been done with code Genesis 1.3 by using the particle distribution generated from the beam dynamics simulation. The results show that for a single stage HGHG, 33.6 nm wavelength FEL radiation can be seeded at FLASH2 with a 235 nm seeding laser.  
 
MOP089
Overview of FEL Seeding Activities at FLASH  
 
  • J. Bödewadt, S. Ackermann, R.W. Aßmann, N. Ekanayake, B. Faatz, G. Feng, I. Hartl, R. Ivanov, T. Laarmann, J.M. Mueller, T. Tanikawa
    DESY, Hamburg, Germany
  • S. Ackermann, A. Azima, M. Drescher, L.L. Lazzarino, C. Lechner, Th. Maltezopoulos, V. Miltchev, T. Plath, J. Roßbach
    Uni HH, Hamburg, Germany
  • K.E. Hacker, S. Khan, R. Molo
    DELTA, Dortmund, Germany
 
  The free-electron laser facility FLASH at DESY operates since several years in SASE mode, delivering high-intensity FEL pulses in the extreme ultra violet and soft x-ray wavelength range for users. In order to get more control of the characteristics of the FEL pulses external FEL seeding has proven to be a reliable method to do so. At FLASH, an experimental setup to test several different external seeding methods has been installed since 2010. After successful demonstration of direct seeding at 38 nm, the setup is now being commissioned to operate in HGHG and EEHG mode. Furthermore, other studies on laser induced effects on the electron beam dynamics will be performed. Beside the experimental activities, a design for the seeding option for the FLASH2 beamline is currently under investigation. The goal for that is to develop a concept which is compatible with the operation of FLASH1 and which satisfies the high demands of the future user community. In this contribution, we give an overview of the activities on FEL seeding at FLASH.  
 
MOP094 Indirect Measurements of NIR and UV Ultrashort Seed Laser Pulses using a Transverse Deflecting RF-Structure 272
 
  • N. Ekanayake, S. Ackermann
    DESY, Hamburg, Germany
  • S. Ackermann, C. Lechner, Th. Maltezopoulos, T. Plath
    Uni HH, Hamburg, Germany
  • K.E. Hacker
    DELTA, Dortmund, Germany
 
  Seeding of free-electron lasers (FELs) using external coherent optical pulses recently became an area of interest as users demand spectrally and temporally coherent FEL radiation which is not achievable in traditional self-amplified spontaneous emission operation mode. Since temporal and spectral properties of the seed laser pulses are directly imprinted on the electron bunch, a proper characterization of these seed pulses is needed. However, the lack of any measurement technique capable of characterizing ultrashort seed laser pulses at the laser-electron interaction region is a primary drawback. In this paper we report indirect measurements of seed laser pulses in an undulator section using a transverse deflecting RF-structure (TDS-LOLA) at the free-electron laser FLASH at DESY. Temporally chirped and unchirped seed pulse length measurements will be compared with second-harmonic generation frequency-resolved optical gating measurements and theoretical simulations. Using this technique we will demonstrate that pulse artifacts such as pre- and post-pulses in the seed pulse in the femtosecond and picosecond timescales can be identified without any temporal ambiguity.
Authors acknowledge the support received from FLASH team and many groups at DESY in preparation and commissioning of experiments. We thank our colleagues in the FLASH seeding team for their support.
 
 
TUB04 Operation of FLASH with Short SASE-FEL Radiation Pulses 342
 
  • J. Rönsch-Schulenburg, E. Hass, N.M. Lockmann, T. Plath, M. Rehders, J. Roßbach
    Uni HH, Hamburg, Germany
  • G. Brenner, S. Dziarzhytski, T. Golz, H. Schlarb, B. Schmidt, E. Schneidmiller, S. Schreiber, B. Steffen, N. Stojanovic, S. Wunderlich, M.V. Yurkov
    DESY, Hamburg, Germany
 
  Funding: The project has been supported by the Federal Ministry of Education and Research of Germany (BMBF) under contract No. 05K10GU2 and FSP301
This paper describes the experimental activity on the generation of very short FEL pulses in the soft x-ray range in the SASE-mode at the high-gain free-electron laser FLASH [1, 2]. The key element, a photo-injector laser which is able to generate laser pulses of about 2 ps FWHM has been optimized and commissioned. It allows the generation of shorter bunches with low bunch charge (of up to 200 pC) directly at the photo-cathode. Initially shorter injector laser pulses and thus shorter bunches eases the required bunch compression factor for short pulses below 10 fs duration which makes operation of the electron beam formation system to be more robust with respect to jitters and collective effects. As a result, overall stability of SASE FEL performance is improved. In the optimal case single-spike operation can be achieved. In this paper the experimental results on production of short electron bunches and the SASE performance using the new injector laser will be shown and the measured electron bunch and FEL radiation properties are discussed. In addition, optimizations of bunch diagnostics for low charge and short bunches are discussed.
 
slides icon Slides TUB04 [1.201 MB]  
 
THP076 Measurements of the Timing Stability at the FLASH1 Seeding Experiment 913
 
  • C. Lechner, A. Azima, M. Drescher, L.L. Lazzarino, Th. Maltezopoulos, V. Miltchev, T. Plath, J. Rönsch-Schulenburg, J. Roßbach, M. Wieland
    Uni HH, Hamburg, Germany
  • S. Ackermann, J. Bödewadt, H. Dachraoui, N. Ekanayake, B. Faatz, M. Felber, K. Honkavaara, T. Laarmann, J.M. Mueller, H. Schlarb, S. Schreiber, S. Schulz
    DESY, Hamburg, Germany
  • G. Angelova Hamberg
    Uppsala University, Uppsala, Sweden
  • K.E. Hacker, S. Khan, R. Molo
    DELTA, Dortmund, Germany
  • P.M. Salen, P. van der Meulen
    FYSIKUM, AlbaNova, Stockholm University, Stockholm, Sweden
 
  Funding: Supported by Federal Ministry of Education and Research of Germany under contract No. 05K10PE1, 05K10PE3, 05K13GU4 and 05K13PE3 and the German Research Foundation programme graduate school 1355.
For seeding of a free-electron laser, the spatial and temporal overlap of the seed laser pulse and the electron bunch in the modulator is critical. To establish the temporal overlap, the time difference between pulses from the seed laser and spontaneous undulator radiation is reduced to a few pico-seconds with a combination of a photomultiplier tube and a streak camera. Finally, for the precise overlap the impact of the seed laser pulses on the electron bunches is observed. In this contribution, we describe the current experimental setup, discuss the techniques applied to establish the temporal overlap and analyze its stability.