Author: Patthey, L.
Paper Title Page
MOP040 General Strategy for the Commissioning of the ARAMIS Undulators with a 3 GeV Electron Beam 107
 
  • M. Calvi, M. Aiba, M. Brügger, S. Danner, R. Ganter, R. Ischebeck, L. Patthey, T. Schietinger, T. Schmidt
    PSI, Villigen PSI, Switzerland
 
  The commissioning of the first SwissFEL undulator line (Aramis) is planned for the beginning of 2017. Each undulator is equipped with a 5-axis camshaft system to remotely adjust its position in the micrometer range and a gap drive system to set K-values between 0.1 and 1.8. In the following paper the beam-based alignment of the undulator with respect to the golden orbit, the definition of look-up tables for the local correction strategy (minimization of undulator field errors), the fine-tuning of the K-values as well as the setting of the phase shifters are addressed. When applicable both electron beam and light based methods are presented and compared.  
 
MOP048
Temporal Diagnostics Measurements with the Pulse Arrival and Length Monitor (PALM) at SACLA  
 
  • I. Gorgisyan, C.P. Hauri
    EPFL, Lausanne, Switzerland
  • I. Gorgisyan, C.P. Hauri, R. Ischebeck, P.N. Juranic, B. Monoszlai, B. Monoszlai, L. Patthey, C. Pradervand, M. Radovic, A.G. Stepanov
    PSI, Villigen PSI, Switzerland
  • R. Ivanov
    DESY, Hamburg, Germany
  • J. Liu
    XFEL. EU, Hamburg, Germany
  • B. Monoszlai
    University of Pecs, Pécs, Hungary
  • K. Ogawa, T. Togashi, M. Yabashi
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • S. Owada
    JASRI/RIKEN, Hyogo, Japan
  • M. Yabashi
    RIKEN/SPring-8, Hyogo, Japan
 
  The development of FEL facilities all over the world necessitates the development of temporal diagnostics for the photon pulses these facilities provide. Photon pulse length and arrival time measurements are particularly helpful for both the operators and the users of an FEL for monitoring the operation of the facility and the experiments. The development of FEL facilities all over the world necessitates the development of temporal diagnostics for the photon pulses these facilities provide. Swiss Free Electron Laser is the upcoming X-ray FEL facility at PSI, that will provide short pulsed radiation in hard X-ray region. In order to face the challenge of measuring the temporal properties of such pulses, a pulse arrival time and length monitor (PALM) is currently being developed at PSI. The concept of THz-streak camera is used to measure the arrival time relative to a beamline laser and the length of a photon pulse. A prototype version of the device was used for measurements at SACLA in order to show the feasibility of the device for photon pulses in hard X-ray region and test the reliability of the measurements. The first results from the beamtime at SACLA will be presented. The plans for further development of the system will be discussed.  
poster icon Poster MOP048 [8.009 MB]  
 
THA01 THz Streak Camera for FELTemporal Diagnostics: Concepts and Considerations 640
 
  • P.N. Juranic, R. Abela, I. Gorgisyan, C.P. Hauri, R. Ischebeck, B. Monoszlai, L. Patthey, C. Pradervand, M. Radovic, L. Rivkin, V. Schlott, A.G. Stepanov
    PSI, Villigen PSI, Switzerland
  • I. Gorgisyan, C.P. Hauri, L. Rivkin
    EPFL, Lausanne, Switzerland
  • R. Ivanov, P. Peier
    DESY, Hamburg, Germany
  • J. Liu
    XFEL. EU, Hamburg, Germany
  • B. Monoszlai
    University of Pecs, Pécs, Hungary
  • K. Ogawa, T. Togashi, M. Yabashi
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • S. Owada
    JASRI/RIKEN, Hyogo, Japan
 
  The accurate, non-destructive measurements of FEL pulse length and arrival time relative to an experimental laser are necessary for operators and users alike. The FEL operators can get a better understanding of their machine and the optics of an FEL by examining the pulse length changes of the photons coming to the user stations, and the users can use the arrival time and pulse length information to better understand their data. PSI has created the pulse arrival and length monitor (PALM) based on the THz-streak camera concept for measurement at x-ray FELs, meant to be used at the upcoming SwissFEL facility. The first results from the experimental beamtime at SACLA will be presented, showcasing the accuracy and reliability of the device. Further plans for improvement and eventual integration into SwissFEL will also be presented.  
slides icon Slides THA01 [5.798 MB]