Author: Honkavaara, K.
Paper Title Page
MOP060 Demonstration of SASE Suppression Through a Seeded Microbunching Instability 177
 
  • C. Lechner, A. Azima, M. Drescher, L.L. Lazzarino, Th. Maltezopoulos, V. Miltchev, T. Plath, J. Rönsch-Schulenburg, J. Roßbach
    Uni HH, Hamburg, Germany
  • S. Ackermann, J. Bödewadt, G. Brenner, M. Dohlus, N. Ekanayake, T. Golz, E. Hass, K. Honkavaara, T. Laarmann, T. Limberg, E. Schneidmiller, N. Stojanovic, M.V. Yurkov
    DESY, Hamburg, Germany
  • K.E. Hacker, S. Khan, R. Molo
    DELTA, Dortmund, Germany
 
  Funding: Supported by Federal Ministry of Education and Research of Germany under contract No. 05K10PE1, 05K10PE3, 05K13GU4, and 05K13PE3 and the German Research Foundation programme graduate school 1355.
Collective effects and instabilities due to longitudinal space charge and coherent synchrotron radiation can degrade the quality of the ultra-relativistic, high-brilliance electron bunches needed for the operation of free-electron lasers. In this contribution, we demonstrate the application of a laser-induced microbunching instability to selectively suppress the SASE process. A significant decrease of photon pulse energies was observed at the free-electron laser FLASH in coincidence with overlap of 800 nm laser pulses and electron bunches within a modulator located approximately 40 meters upstream of the undulators. We discuss the underlying mechanisms based on longitudinal space charge amplification [E.A. Schneidmiller and M.V. Yurkov, Phys. Rev. ST Accel. Beams 13, 110701 (2010)] and present measurements.
 
 
WEB05 FLASH: First Soft X-ray FEL Operating Two Undulator Beamlines Simultaneously 635
 
  • K. Honkavaara, B. Faatz, J. Feldhaus, S. Schreiber, R. Treusch, M. Vogt
    DESY, Hamburg, Germany
 
  FLASH, the free electron laser user facility at DESY (Hamburg, Germany), has been upgraded with a second undulator beamline FLASH2. After a shutdown to connect FLASH2 to the FLASH linac, FLASH1 is back in user operation since February 2014. Installation of the FLASH2 electron beamline has been completed early 2014, and the first electron beam was transported into the new beamline in March 2014. The commissioning of FLASH2 takes place in 2014 parallel to FLASH1 user operation. This paper reports the status of the FLASH facility, and the first experience of operating two FEL beamlines.  
slides icon Slides WEB05 [2.481 MB]  
 
THP076 Measurements of the Timing Stability at the FLASH1 Seeding Experiment 913
 
  • C. Lechner, A. Azima, M. Drescher, L.L. Lazzarino, Th. Maltezopoulos, V. Miltchev, T. Plath, J. Rönsch-Schulenburg, J. Roßbach, M. Wieland
    Uni HH, Hamburg, Germany
  • S. Ackermann, J. Bödewadt, H. Dachraoui, N. Ekanayake, B. Faatz, M. Felber, K. Honkavaara, T. Laarmann, J.M. Mueller, H. Schlarb, S. Schreiber, S. Schulz
    DESY, Hamburg, Germany
  • G. Angelova Hamberg
    Uppsala University, Uppsala, Sweden
  • K.E. Hacker, S. Khan, R. Molo
    DELTA, Dortmund, Germany
  • P.M. Salen, P. van der Meulen
    FYSIKUM, AlbaNova, Stockholm University, Stockholm, Sweden
 
  Funding: Supported by Federal Ministry of Education and Research of Germany under contract No. 05K10PE1, 05K10PE3, 05K13GU4 and 05K13PE3 and the German Research Foundation programme graduate school 1355.
For seeding of a free-electron laser, the spatial and temporal overlap of the seed laser pulse and the electron bunch in the modulator is critical. To establish the temporal overlap, the time difference between pulses from the seed laser and spontaneous undulator radiation is reduced to a few pico-seconds with a combination of a photomultiplier tube and a streak camera. Finally, for the precise overlap the impact of the seed laser pulses on the electron bunches is observed. In this contribution, we describe the current experimental setup, discuss the techniques applied to establish the temporal overlap and analyze its stability.