FLASH at **DESY**

The first soft X-ray FEL operating two undulator beamlines simultaneously

Katja Honkavaara, DESY for the FLASH team

FEL Conference 2014, Basel 25-29 August, 2014

First Lasing FLASH2

> First lasing FLASH2: August-20, 2014

FLASH1: 250 pulses

History

> TESLA Test Facility (TTF) Linac constructed at DESY in mid 1990's

- to test experimentally high gradient superconducting accelerator technology in the framework of the TESLA linear collider project
- to drive a pilot VUV SASE free-electron laser (TTF-FEL)
- > TTF-FEL operated 2000-2002
 - wavelength range from 80 nm to 120 nm
- FLASH constructed 2003-2004
 - first lasing in January 2005 (32 nm)
 - user FEL facility since summer 2005, first user facility in VUV range worldwide
 - wavelength range from 13 nm to 47 nm
- Energy upgrades
 - summer 2007: Electron beam energy up to 1 GeV \rightarrow photon wavelength down to 6.5 nm
 - = 2009-2010: Electron beam energy up to 1.25 GeV \rightarrow photon wavelength down to 4.1 nm
- Second undulator beamline (FLASH2) constructed 2011-2014
 - first lasing in August 2014

FLASH Layout 2014

FEL Radiation Parameters

Wavelength range (fundamental) Average single pulse energy Pulse duration (FWHM) Peak power (from av.) Pulses per second Spectral width (FWHM) Photons per pulse Average Brilliance Peak Brilliance 4.2 - 45 nm 10 - 500 μ J < 50 - 200 fs 1 - 3 GW 10 - 5000 0.7 - 2 % 10¹¹ - 10¹³ 10¹⁷ - 10²¹ B* 10²⁹ - 10³¹ B* * photons/s/mrad²/mm²/0.1%bw

more than 200 publications on photon science at FLASH, many in high impact journals

Shutdown February – July 2013

- FLASH. Free-Electron Laser in Hamburg
- Opening wall between FLASH1 Tunnel and FLASH2 Extraction
- Modification FLASH1 beamline from the last accelerator module to the collimator section
 - kicker-septum system installed to extract FLASH2 beam
- Installation of FLASH2 Extraction beamline
- > Hardware upgrades of control systems
 - personnel interlock system, LLRF, magnet controls

Katja Honkavaara | FEL Conference 2014 | August-27, 2014

FLASH1 Beamline Alignment

> Ground settlement up to 10 mm expected due to heavy load

- new FLASH2 buildings
- filling up the "Triangle" with some kilotonnes of sand
- Complete FLASH1 beamline surveyed and re-aligned in summer and autumn 2013

FLASH1 Commissioning

- > Operation of FLASH linac started in August, 2013
 - in September, mainly beamline survey and alignment
- Stable FEL operation re-established by end of 2013
 - including re-alignment and commissioning of photon beamlines
- New record of FLASH SASE performance: up to 540 µJ at 8.7 nm
- Commissioning of upgraded control systems
 - µTCA based LLRF system
 - magnet controls
 - timing system for simultaneous operation
- > New electron beam optics implemented
 - for simultaneous operation of FLASH1 and FLASH2

FLASH1 User Operation

- 5th user period from February 2014 to April 2015
- > Examples of realized beam parameters
 - 400 pulses (1MHz spacing) at 7.8 nm and 13.5 nm
 - 50 pulses (200 kHz spacing) at 42 nm
 - 40 pulses (100 kHz spacing) at 15 nm
 - Single pulse at 4.3 nm
- Many experiments request in addition
 - short pulses (< 50 fs)</p>
 - small spectral bandwidth (< 1%)</p>
 - small arrival time jitter (down to 20 to 40 fs level)

Katja Honkavaara | FEL Conference 2014 | August-27, 2014

FLASH2 Construction

- Construction of new buildings 2011 2014
- Mounting of electron beamline started in summer 2013, finished January 2014 (inclusive undulators)
- > Basic photon diagnostics installed
 - MCP, Ce:YAG screen, spectrometer
- First photon beamline in experimental hall in 2015

FLASH2 Operation Started

- Electron beam operation started in March 2014
 - first electron beam in extraction March-4, 2014
 - first beam to dump May-23, 2014
 - only few days available for FLASH2 beam operation before simultaneous operation established
- Simultaneous operation of FLASH1 (SASE) and FLASH2 (electron beam) starting end of May 2014
 - FLASH2 runs now in parallel to FLASH1 whenever possible, mainly during FLASH1 photon user experiments
 → time available for commissioning increased significantly
 - dedicated FLASH2 beam time reserved as well
- > First lasing: August-20, 2014

Photon beam on FL2_CE_YAG _August-20, 2014

FLASH2 Commissioning

- Electron beam transport up to dump routinely
- On-going commissioning tasks
 - beam loss monitors and machine protection system
 - electron beam diagnostics (screens, toroids, BPMs)
 - beam optics, matching, dispersion
- Next step: SASE commissioning
- Example of electron beam diagnostics: 17 Cavity BPMs along FLASH2
 - pick-ups provided by DESY, electronics by PSI
 - expected resolution:
 - $2\ \mu m$ for charges between 100 pC and 1 nC

Katja Honkavaara | FEL Conference 2014 | August-27, 2014

- Take advantage of superconducting accelerator: long RF pulse (1 ms)
 - \rightarrow FLASH1 and FLASH2 share a long bunch train, both served at 10 Hz
- > Flexibility for photon experiments
 - Different wavelengths
 - → FLASH1 (fixed gap undulators): requires change of electron beam energy
 - → FLASH2 (variable gap undulators): change of undulator gap
 - \rightarrow small electron beam energy changes independently for FLASH1 and FLASH2
 - Different photon pulse duration
 - \rightarrow different bunch compression and different bunch charge
 - Different pulse pattern

Katja Honkavaara | FEL Conference 2014 | August-27, 2014

Realization of Simultaneous Operation

> Fast kicker and Lambertson septum to extract a part of bunch train to FLASH2

- Two injector lasers: FLASH1 and FLASH2 bunch pattern and bunch charge selected independently
- Flexible RF-system: amplitude and phase adjusted
 - in certain limits independently for FLASH1 and FLASH2

1800

- Simultaneous FLASH2 electron beam operation and FLASH1 lasing established for several different FLASH1 photon wavelengths
 - FLASH2 runs in parallel to FLASH1 whenever possible
 - Important: parallel set-up of FLASH1 and FLASH2 operation essential
- First simultaneous SASE operation on August-20, 2014

Bunch number

Katja Honkavaara | FEL Conference 2014 | August-27, 2014

Summary

- FLASH upgraded with a second undulator beamline
- FLASH1 back in user operation
 - 5th user period from February 2014 to April 2015
- FLASH2 beam operation started
 - first electron beam to dump in May 2014
 - first lasing August-20, 2014
- Simultaneous operation established
 - FLASH2 commissioning mainly in parallel to FLASH1 user operation

