Author: Yao, C.
Paper Title Page
MOPLM17 Longitudinal Impedance Modeling of APS Particle Accumulator Ring with CST 140
 
  • C. Yao, J. Carvelli, K.C. Harkay, L.H. Morrison
    ANL, Lemont, Illinois, USA
  • D. Hui
    University of Arizona, Tucson, Arizona, USA
  • J.S. Wang
    Dassault Systems Simulia, Waltham, Massachusetts, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
The APS-U (APS upgrade) ring plans implement a "swap out" injection scheme, which requires a injected beam of 15.6 nC single-bunch beam. The Particle Accumulator Ring (PAR), originally designed for up to 6 nC charge, must be upgraded to provide 20 nC single bunch beam. Our studies have shown that bunch length of the PAR beam, typically 300 ps at lower charge, increases to 800 ps at high charge due to longitudinal instabilities, which causes low injection efficiency of the downstream Booster ring. We completed beam impedance of all the PAR vacuum components recently with CST wakefield solver. 3D CAD models are directly imported into CST and various techniques were explored to improve and verify the results. The results are also cross-checked with that from GdfidL and Echo simulation. We identified 23 bellow- and 24 non-bellow flanges that contribute to as much as 50% of the total loss factor. We are considering upgrade options to reduce over all beam loading and longitudinal impedance. Beam tracking simulation is in progress that including the longitudinal impedance results from the simulations. We report the results and methods of the CST impedance simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM17  
About • paper received ※ 22 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLM21 Circuit Model Analysis for High Charge in the APS Particle Accumulator Ring 151
 
  • K.C. Harkay, J.R. Calvey, J.C. Dooling, L. Emery, R.R. Lindberg, K.P. Wootton, C. Yao
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source (APS) particle accumulator ring (PAR) was designed to accumulate linac pulses into a single bunch with a fundamental rf system, and longitudinally compress the beam with a harmonic rf system prior to injection into the booster. For APS Upgrade, the injectors will need to supply full-current bunch replacement with high single-bunch charge for swap-out in the new storage ring. Significant bunch lengthening, energy spread, and synchrotron sidebands are observed in PAR at high charge. Lower-charge dynamics are dominated by potential well distortion, while higher-charge dynamics appear to be dominated by microwave instability. Before a numerical impedance model was available, a simple circuit model was developed by fitting the measured bunch distributions to the Haissinski equation. Energy scaling was then used to predict the beam energy sufficient to raise the instability threshold to 18-20 nC. With the beam in a linear or nearly linear regime, higher harmonic radio frequency (rf) gap voltage can be used to reduce the bunch length at high charge and better match the booster acceptance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM21  
About • paper received ※ 27 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLE11 Proposed Enhanced Imaging Station in the 6-GeV Booster-to-Storage Ring Transport Line for APS Upgrade 583
 
  • A.H. Lumpkin
    Fermilab, Batavia, Illinois, USA
  • W. Berg, J.C. Dooling, K.P. Wootton, C. Yao
    ANL, Lemont, Illinois, USA
 
  Funding: This manuscript has been authored by FRA, LLC under Contract No.DE-AC02-07CH11359 with the U.S.DoE, Office of HEP. Work supported by U.S.DoE, Office of Science, under Contract No.DE-AC02-06CH11357.
One of the challenges of the injector for the Advanced Photon Source Upgrade (APS-U) is the measurement and monitoring of the required high charge electron beam at 6 GeV between the Booster synchrotron and the storage ring in the transport line (BTS. In APS-U charges of up to 17 nC per micropulse are specified with a beam geometrical horizontal emittance of 60 nm rad. Vertical beam sizes at the imaging station of ~80 µm (σ) are expected so system resolutions of <30 µm are warranted. A phased approach to enhance the imaging station performance has been initiated. Recently, the 20-year-old Chromox screen oriented at 45 degrees to the beam was replaced by a 100-micron thick YAG:Ce screen which gave an improved screen resolution of <10 micron(σ. However, the optical magnification of the system still needs to be increased. In addition, the high areal charge densities are expected to exceed the scintillator mechanism’s saturation threshold so an optical transition radiation (OTR) screen will be added to the station for high-charge studies. A final phase would be the use of optical diffraction radiation (ODR) as a non-intercepting, beam-size monitor during top-up injections.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLE11  
About • paper received ※ 22 August 2019       paper accepted ※ 02 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLE05 Tracking With Space Harmonics in ELEGANT Code 892
 
  • Y.P. Sun, C. Yao
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The elegant code has the capability of simulating particle motion in accelerating or deflecting RF cavities, with a simplified (or ideal) model of the electromagnetic fields. To improve the accuracy of RF cavity simulations, the ability to track with space harmonics has been added to the elegant code. The sum of all the space harmonics will mimic the real electromagnetic fields in the RF cavity. These space harmonics will be derived from electromagnetic fields simulation of the RF cavity. This method should be general, which can be applied to any RF cavity structure, including accelerating and deflecting cavities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLE05  
About • paper received ※ 31 August 2019       paper accepted ※ 04 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)