Paper | Title | Page |
---|---|---|
TUZBB2 | Reaching Low Emittance in Synchrotron Light Sources by Using Complex Bends | 352 |
TUPLM30 | use link to see paper's listing under its alternate paper code | |
|
||
All modern projects of low-emittance synchrotrons follow Multi-Bend Achromat approach*. The low emittance is realized by arranging small horizontal beta-function and dispersion in the bending magnets, the number of which varies from 4 to 9 magnets per cell. We propose an alternative way to reach low emittance by use of a lattice element that we call "Complex Bend"**, instead of regular dipole magnets. The Complex Bend is a new concept of bending magnet consisting of a number of dipole poles interleaved with strong alternate focusing so as to maintain the beta-function and dispersion oscillating at very low values. The details of Complex Bend, considerations regarding the choice of optimal parameters, thoughts for its practical realization and use in low-emittance lattices, are discussed.
* MBA: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.495.2446&rep=rep1&type=pdf ** Complex Bend: Phys. Rev. Accel. Beams 21, 100703 (2018) |
||
![]() |
Slides TUZBB2 [7.894 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUZBB2 | |
About • | paper received ※ 01 September 2019 paper accepted ※ 05 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPLM36 | Temperature Measurements of the NSLS-II Vacuum Components | 443 |
|
||
This paper is dedicated to the analysis of our recent experience from ramp-up of operating current at NSLS-II from 25 mA at the end of commissioning in 2014 to 475 mA achieved in studies today. To approach the design level of the ring intensity we had to solve major problems in overheating of the chamber components. Since the beginning of the NSLS-II commissioning, the temperature of the vacuum components has been monitored by the Resistance Temperature Detectors located predominantly outside of the vacuum chamber and attached to the chamber body. A couple of vacuum components were designed with the possibility for internal temperature measurements under the vacuum as diagnostic assemblies. Temperature map helps us to control overheating of the vacuum components around the ring especially during the current ramp-up. The average current of 475mA has been achieved with two main 500MHz RF cavities and w/o any harmonic cavities. In this paper we discuss the heating results for a 15ps bunch length (at low current) of the following vacuum components: Large Aperture BPM, Small Aperture BPM, Bellows, Flanges, Ceramics Chambers and Stripline Kickers. | ||
![]() |
Poster TUPLM36 [3.696 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM36 | |
About • | paper received ※ 28 August 2019 paper accepted ※ 05 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |