Author: Szustkowski, S.
Paper Title Page
TUZBB6 Nonlinear Tune-Shift Measurements in the Integrable Optics Test Accelerator 368
SUPLM11   use link to see paper's listing under its alternate paper code  
TUPLM32   use link to see paper's listing under its alternate paper code  
 
  • S. Szustkowski, S. Chattopadhyay
    Northern Illinois University, DeKalb, Illinois, USA
  • S. Chattopadhyay, A.L. Romanov, A. Valishev
    Fermilab, Batavia, Illinois, USA
  • N. Kuklev
    University of Chicago, Chicago, Illinois, USA
 
  Funding: US Department of Energy, Office of High Energy Physics, General Accelerator Research and Development (GARD) Program
The first experimental run of Fermilab’s Integrable Optics Test Accelerator (IOTA) ring aimed at testing the concept of nonlinear integrable beam optics. In this report we present the preliminary results of the studies of a nonlinear focusing system with two invariants of motion realized with the special elliptic-potential magnet. The key measurement of this experiment was the horizontal and vertical betatron tune shift as a function of transverse amplitude. A vertical kicker strength was varied to change the betatron amplitude for several values of the nonlinear magnet strength. The turn-by-turn positions of the 100 MeV electron beam at twenty-one beam position monitors around the ring were captured and used for the analysis of phase-space trajectories.
 
slides icon Slides TUZBB6 [12.888 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUZBB6  
About • paper received ※ 28 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLE06 Skimmer-Nozzle Configuration Measurements for a Gas Sheet Beam Profile Monitor 573
SUPLO07   use link to see paper's listing under its alternate paper code  
 
  • S. Szustkowski, S. Chattopadhyay, B.T. Freemire
    Northern Illinois University, DeKalb, Illinois, USA
  • S. Chattopadhyay, D.J. Crawford, B.T. Freemire
    Fermilab, Batavia, Illinois, USA
 
  Funding: US Department of Energy, Office of High Energy Physics, General Accelerator Research and Development (GARD) Program
Understanding the characteristics of the gas sheet being produced and optimal configuration of the gas injection system is essential to the the performance of a gas sheet beam profile monitor. A gas injection system test stand has been built at Fermilab to test various nozzle and slit configurations. The distance between the nozzle and slit can be changed to find an optimal configuration. Using a moveable cold cathode gauge the gas profile is measured.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLE06  
About • paper received ※ 28 August 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXBA2 Recent Results and Opportunities at the IOTA Facility 599
 
  • A.L. Romanov, D.R. Broemmelsiek, K. Carlson, D.J. Crawford, N. Eddy, D.R. Edstrom, J.D. Jarvis, V.A. Lebedev, S. Nagaitsev, J. Ruan, J.K. Santucci, V.D. Shiltsev, G. Stancari, A. Valishev, A. Warner
    Fermilab, Batavia, Illinois, USA
  • S. Chattopadhyay, S. Szustkowski
    Northern Illinois University, DeKalb, Illinois, USA
  • Y.K. Kim, N. Kuklev, I. Lobach
    University of Chicago, Chicago, Illinois, USA
 
  The Integrable Optics Test Accelerator (IOTA) was recently commissioned as part of the Fermilab Accelerator Science and Technology (FAST) facility. The IOTA ring was briefly operated with electrons at 47 MeV followed by a 6-months run with 100 MeV electrons. The main goal of the first run was to study beam dynamics in the integrable lattices with elliptical nonlinear magnets and in the quasi-integrable case with profiled octupole channel. The flexibility of the IOTA ring allowed a wide range of complementary studies, such as experiments with a single electron; studies of fluctuations in undulator radiation and operation with low emittance beams. Over the next year the proton injector will be installed and two runs carried out. One run will be dedicated to the refinement of nonlinear experiments and another will be dedicated to the proof-of-principle demonstration of Optical Stochastic Cooling.  
slides icon Slides WEXBA2 [12.702 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEXBA2  
About • paper received ※ 31 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)