Author: Stupakov, G.
Paper Title Page
MOOHC2 The US Electron Ion Collider Accelerator Designs 1
 
  • A. Seryi, S.V. Benson, S.A. Bogacz, P.D. Brindza, M.W. Bruker, A. Camsonne, E. Daly, P. Degtiarenko, Y.S. Derbenev, M. Diefenthaler, J. Dolbeck, R. Ent, R. Fair, D. Fazenbaker, Y. Furletova, B.R. Gamage, D. Gaskell, R.L. Geng, P. Ghoshal, J.M. Grames, J. Guo, F.E. Hannon, L. Harwood, S. Henderson, H. Huang, A. Hutton, K. Jordan, D.H. Kashy, A.J. Kimber, G.A. Krafft, R. Lassiter, R. Li, F. Lin, M.A. Mamun, F. Marhauser, R. McKeown, T.J. Michalski, V.S. Morozov, P. Nadel-Turonski, E.A. Nissen, G.-T. Park, H. Park, M. Poelker, T. Powers, R. Rajput-Ghoshal, R.A. Rimmer, Y. Roblin, D. Romanov, P. Rossi, T. Satogata, M.F. Spata, R. Suleiman, A.V. Sy, C. Tennant, H. Wang, S. Wang, C. Weiss, M. Wiseman, W. Wittmer, R. Yoshida, H. Zhang, S. Zhang, Y. Zhang, Z.W. Zhao
    JLab, Newport News, Virginia, USA
  • D.T. Abell, D.L. Bruhwiler, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, W. Guo, Y. Hao, A. Hershcovitch, H. Huang, W.A. Jackson, J. Kewisch, A. Kiselev, V. Litvinenko, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, C. Montag, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, E. Wang, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • D.P. Barber
    DESY, Hamburg, Germany
  • I.V. Bazarov
    Cornell University, Ithaca, New York, USA
  • G.I. Bell, J.R. Cary
    Tech-X, Boulder, Colorado, USA
  • Y. Cai, Y.M. Nosochkov, A. Novokhatski, G. Stupakov, M.K. Sullivan, C.-Y. Tsai
    SLAC, Menlo Park, California, USA
  • Z.A. Conway, M.P. Kelly, B. Mustapha, U. Wienands, A. Zholents
    ANL, Lemont, Illinois, USA
  • S.U. De Silva, J.R. Delayen, H. Huang, C. Hyde, S. Sosa, B. Terzić
    ODU, Norfolk, Virginia, USA
  • K.E. Deitrick, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • V.G. Dudnikov, R.P. Johnson
    Muons, Inc, Illinois, USA
  • B. Erdelyi, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • J.D. Fox
    Stanford University, Stanford, California, USA
  • J. Gerity, T.L. Mann, P.M. McIntyre, N. Pogue, A. Sattarov
    Texas A&M University, College Station, USA
  • E. Gianfelice-Wendt, S. Nagaitsev
    Fermilab, Batavia, Illinois, USA
  • Y. Hao, P.N. Ostroumov, A.S. Plastun, R.C. York
    FRIB, East Lansing, Michigan, USA
  • T. Mastoridis
    CalPoly, San Luis Obispo, California, USA
  • J.D. Maxwell, R. Milner, M. Musgrave
    MIT, Cambridge, Massachusetts, USA
  • J. Qiang, G.L. Sabbi
    LBNL, Berkeley, California, USA
  • D. Teytelman
    Dimtel, Redwood City, California, USA
  • R.C. York
    NSCL, East Lansing, Michigan, USA
 
  With the completion of the National Academies of Sciences Assessment of a US Electron-Ion Collider, the prospects for construction of such a facility have taken a step forward. This paper provides an overview of the two site-specific EIC designs: JLEIC (Jefferson Lab) and eRHIC (BNL) as well as brief overview of ongoing EIC R&D.  
slides icon Slides MOOHC2 [14.774 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOOHC2  
About • paper received ※ 29 August 2019       paper accepted ※ 04 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLS09 Fast Two-Dimensional Calculation of Coherent Synchrotron Radiation in Relativistic Beams 783
SUPLM08   use link to see paper's listing under its alternate paper code  
 
  • J. Tang, G. Stupakov
    SLAC, Menlo Park, California, USA
 
  Coherent Synchrotron Radiation(CSR) in a relavistic beam during compression can lead to longitudinal modulation of the bunch with wavelength smaller than bunch length and is regarded as one of the main sources of emittance growth in the bunch compressor. Current simulations containing CSR wake fields often utilize one-dimensional model assuming a line beam. Despite its good computation efficiency, 1D CSR model can be inaccurate in many cases because it ignores the so-called ’compression effect’. On the other hand, the existing 3D codes are often slow and have high demands on computational resources. In this paper we propose a new method for calculation of the three-dimensional CSR wakefields in relativistic beams with integrals of retarded potentials. It generalizes the 1D model and includes the transient effects at the entrance and the exit from the magnet. Within given magnetic lattice and initial beam distributions, the formalism reduces to 2D or 3D integration along the trajectory and therefore allows fast numerical calculations using 2D or 3D matrices.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLS09  
About • paper received ※ 28 August 2019       paper accepted ※ 04 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLH16 Tolerances on Energy Deviation in Microbunched Electron Cooling 837
 
  • P. Baxevanis, G. Stupakov
    SLAC, Menlo Park, California, USA
 
  The performance of microbunched electron cooling (MBEC)* is highly dependent on the quality of the hadron and cooler electron beams. As a result, understanding the influence of beam imperfections is very important from the point of view of determining the tolerances of MBEC. In this work, we incorporate a non-zero average energy offset into our 1D formalism (**,***), which allows us to study the impact of effects such as correlated energy spread (chirp). In particular, we use our analytical theory to calculate the cooling rate loss due to the electron beam chirp and discuss ways to minimize the influence of this effect on MBEC.
* D. Ratner, Phys. Rev. Lett. 111, 084802 (2013).
** G. Stupakov, Phys. Rev. AB, 21, 114402 (2018).
*** G. Stupakov and P. Baxevanis, Phys. Rev. AB, 22, 034401 (2019).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH16  
About • paper received ※ 28 August 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLH17 Diffusion and Nonlinear Plasma Effects in Microbunched Electron Cooling 841
 
  • P. Baxevanis, G. Stupakov
    SLAC, Menlo Park, California, USA
 
  The technique of michrobunched electron cooling (MBEC) is an attractive scheme for enhancing the brightness of hadron beams in future high-energy circular colliders (*). To achieve the required cooling times for a realistic machine configuration, it is necessary to boost the bunching of the cooler electron beam through amplification sections that utilize plasma oscillations. However, these plasma sections also amplify the intrinsic noise of the electron beam, leading to additional diffusion that can be very detrimental to the cooling. Moreover, they can exhibit nonlinear gain behavior, which reduces performance and limits the applicability of theory. In this paper, we study both of these important effects analytically with the aim of quantifying their influence and keeping them under control.
* D. Ratner, Phys. Rev. Lett. 111, 084802 (2013).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH17  
About • paper received ※ 28 August 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)