Author: Ruan, J.
Paper Title Page
TUYBB5 Design and Analysis of a Halo-Measurement Diagnostics 322
SUPLS10   use link to see paper's listing under its alternate paper code  
TUPLS15   use link to see paper's listing under its alternate paper code  
 
  • C.J. Marshall, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • S.V. Benson, J. Gubeli
    JLab, Newport News, Virginia, USA
  • P. Piot, J. Ruan
    Fermilab, Batavia, Illinois, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear physics under contract DE-AC05-06OR23177 and DE-AC02-07CH11359.
A large dynamical-range diagnostics (LDRD) design at Jefferson Lab will be used at the FAST-IOTA injector to measure the transverse distribution of halo associated with a high-charge electron beam. One important aspect of this work is to explore the halo distribution when the beam has significant angular momentum (i.e. is magnetized). The beam distribution is measured by recording radiation produced as the beam impinges a YAG:Ce screen. The optical radiation is split with a fraction directed to a charged-couple device (CCD) camera. The other part of the radiation is reflected by a digital micromirror device (DMD) that masks the core of the beam distribution. Combining the images recorded by the two cameras provides a measurement of the transverse distribution with over a large dynamical range. The design and analysis of the optical system will be discussed including optical simulation using SRW and the result of a mockup experiment to test the performances of the system will be presented.
 
slides icon Slides TUYBB5 [3.013 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUYBB5  
About • paper received ※ 02 September 2019       paper accepted ※ 13 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLM20 Generation of High-Charge Magnetized Electron Beams Consistent With JLEIC Electron Cooling Requirements 414
SUPLM21   use link to see paper's listing under its alternate paper code  
 
  • A.T. Fetterman, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • S.V. Benson, F.E. Hannon, S. Wang
    JLab, Newport News, Virginia, USA
  • D.J. Crawford, D.R. Edstrom, P. Piot, J. Ruan
    Fermilab, Batavia, Illinois, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear physics under contract DE-AC05-06OR23177 and DE-AC02-07CH11359.
The proposed Jefferson Lab Electron-Ion Collider (JLEIC), currently under design, relies on electron cooling in order to achieve the desired luminosity. This includes an electron beam with >55 Mev, 3.2 nC bunches that cools hadron beams with energies up to 100 GeV. To enhance the cooling, the electron beam must be magnetized with a specific eigen-emittance partition. This paper explores the use of the Fermilab Accelerator Science and Technology (FAST) facility to demonstrate the generation of an electron beam with parameters consistent with those required in the JLEIC high-energy cooler. We demonstrate via simulations the generation of the required electron-beam parameters and perform a preliminary experiment to validate FAST capabilities to produce such beams.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM20  
About • paper received ※ 07 September 2019       paper accepted ※ 19 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLM21 Optical Stochastic Cooling Program at Fermilab’s Integrable Optics Test Accelerator 418
 
  • J.D. Jarvis, S. Chattopadhyay, V.A. Lebedev, H. Piekarz, P. Piot, A.L. Romanov, J. Ruan
    Fermilab, Batavia, Illinois, USA
  • S. Chattopadhyay, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Fermi National Accelerator Laboratory is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Beam cooling enables an increase of peak and average luminosities and significantly expands the discovery potential of colliders. Optical Stochastic Cooling (OSC) is a high-bandwidth cooling technique that will advance the present state-of-the-art, stochastic-cooling rate by more than three orders of magnitude. A proof-of-principle demonstration with protons or heavy ions involves prohibitive costs, risks and technological challenges; however, exploration of OSC with electrons is a cost-effective alternative for studying the beam-cooling physics, optical systems and diagnostics. The ability to demonstrate OSC was a key requirement in the design of Fermilab’s Integrable Optics Test Accelerator (IOTA) ring. The IOTA program will explore the physics and technology of OSC in amplified and non-amplified configurations. We also plan to investigate the cooling and manipulation of a single electron stored in the ring. The OSC apparatus is currently being fabricated, and installation will begin in the fall of 2019. In this contribution, we will describe the IOTA OSC program, the upcoming passive-OSC experimental runs and ongoing preparations for an amplified-OSC experiment
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM21  
About • paper received ※ 27 August 2019       paper accepted ※ 06 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXBA2 Recent Results and Opportunities at the IOTA Facility 599
 
  • A.L. Romanov, D.R. Broemmelsiek, K. Carlson, D.J. Crawford, N. Eddy, D.R. Edstrom, J.D. Jarvis, V.A. Lebedev, S. Nagaitsev, J. Ruan, J.K. Santucci, V.D. Shiltsev, G. Stancari, A. Valishev, A. Warner
    Fermilab, Batavia, Illinois, USA
  • S. Chattopadhyay, S. Szustkowski
    Northern Illinois University, DeKalb, Illinois, USA
  • Y.K. Kim, N. Kuklev, I. Lobach
    University of Chicago, Chicago, Illinois, USA
 
  The Integrable Optics Test Accelerator (IOTA) was recently commissioned as part of the Fermilab Accelerator Science and Technology (FAST) facility. The IOTA ring was briefly operated with electrons at 47 MeV followed by a 6-months run with 100 MeV electrons. The main goal of the first run was to study beam dynamics in the integrable lattices with elliptical nonlinear magnets and in the quasi-integrable case with profiled octupole channel. The flexibility of the IOTA ring allowed a wide range of complementary studies, such as experiments with a single electron; studies of fluctuations in undulator radiation and operation with low emittance beams. Over the next year the proton injector will be installed and two runs carried out. One run will be dedicated to the refinement of nonlinear experiments and another will be dedicated to the proof-of-principle demonstration of Optical Stochastic Cooling.  
slides icon Slides WEXBA2 [12.702 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEXBA2  
About • paper received ※ 31 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)