Paper | Title | Page |
---|---|---|
MOOHC2 | The US Electron Ion Collider Accelerator Designs | 1 |
|
||
With the completion of the National Academies of Sciences Assessment of a US Electron-Ion Collider, the prospects for construction of such a facility have taken a step forward. This paper provides an overview of the two site-specific EIC designs: JLEIC (Jefferson Lab) and eRHIC (BNL) as well as brief overview of ongoing EIC R&D. | ||
![]() |
Slides MOOHC2 [14.774 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOOHC2 | |
About • | paper received ※ 29 August 2019 paper accepted ※ 04 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOYBA4 | eRHIC Design Update | 18 |
TUPLO11 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The future electron-ion collider (EIC) aims at an electron-proton luminosity of 1033 to 1034 cm-2 sec-1 and a center-of-mass energy range from 20 to 140 GeV. The eRHIC design has been continuously evolving over a couple of years and has reached a considerable level of maturity. The concept is generally conservative with very few risk items which are mitigated in various ways. |
||
![]() |
Slides MOYBA4 [5.466 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOYBA4 | |
About • | paper received ※ 24 August 2019 paper accepted ※ 31 August 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUZBA2 | Electron Ion Collider Machine Detector Interface | 335 |
|
||
This presentation summarizes the physics requirements as they translate into accelerator requirements at the machine-detector interface. Unique aspects of the Interaction Region and detector acceptance – unique to an Electron Ion Collider – are summarized. Designs of both site-specific concepts are outlined. | ||
![]() |
Slides TUZBA2 [13.525 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUZBA2 | |
About • | paper received ※ 29 August 2019 paper accepted ※ 05 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |