Author: Michnoff, R.J.
Paper Title Page
MOYBA6 Accelerator Performance During the Beam Energy Scan II at RHIC in 2019 26
 
  • C. Liu, I. Blacker, M. Blaskiewicz, K.A. Brown, D. Bruno, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, C.E. Giorgio, X. Gu, T. Hayes, H. Huang, R.L. Hulsart, D. Kayran, N.A. Kling, Y. Luo, D. Maffei, G.J. Marr, B. Martin, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, I. Pinayev, S. Polizzo, V.H. Ranjbar, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, P. Thieberger, A. Zaltsman, K. Zeno, I.Y. Zhang, W. Zhang
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
RHIC provided Au-Au collisions at beam energies of 9.8, 7.3, 4.59 and 3.85 GeV/nucleon during the first year of the Beam Energy Scan II in 2019. The physics goals at the first two higher beam energies were achieved. At the two lower beam energies, bunched electron beam cooling has been demonstrated successfully. The accelerator performance was improved compared to when RHIC was operated at these energies in earlier years. This article will introduce the challenges to operate RHIC at low energies and the corresponding countermeasures, and review the improvement of accelerator performance during the operation in 2019.
 
slides icon Slides MOYBA6 [6.579 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOYBA6  
About • paper received ※ 21 August 2019       paper accepted ※ 06 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZBB3 Precise Beam Velocity Matching for the Experimental Demonstration of Ion Cooling With a Bunched Electron Beam 356
 
  • S. Seletskiy, M. Blaskiewicz, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, R.L. Hulsart, D. Kayran, J. Kewisch, K. Mernick, R.J. Michnoff, T.A. Miller, G. Robert-Demolaize, V. Schoefer, H. Song, P. Thieberger, P. Wanderer
    BNL, Upton, New York, USA
 
  The first ever electron cooling based on the RF acceleration of electron bunches was experimentally demonstrated on April 5, 2019 at the Low Energy RHIC Electron Cooler (LEReC) at BNL. The critical step in obtaining successful cooling of the Au ion bunches in the RHIC cooling sections was the accurate matching of average longitudinal velocities of electron and ion beams corresponding to a relative error of less than 5·10-4 in the e-beam momentum. Since the electron beam kinetic energy is just 1.6 MeV, measuring the absolute e-beam energy with sufficient accuracy and eventually achieving the electron-ion velocity matching was a nontrivial task. In this paper we describe our experience with measuring and setting the e-beam energy at LEReC.  
slides icon Slides TUZBB3 [1.340 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUZBB3  
About • paper received ※ 26 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLO05 Fixed Target Operation at RHIC in 2019 542
 
  • C. Liu, I. Blacker, M. Blaskiewicz, K.A. Brown, D. Bruno, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, C.E. Giorgio, X. Gu, T. Hayes, H. Huang, R.L. Hulsart, D. Kayran, N.A. Kling, Y. Luo, D. Maffei, G.J. Marr, B. Martin, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, I. Pinayev, S. Polizzo, V.H. Ranjbar, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, P. Thieberger, A. Zaltsman, K. Zeno, I.Y. Zhang, W. Zhang
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
RHIC operated in fixed target mode at beam energies 4.59, 7.3, and 31.2 GeV/nucleon in 2019 as a part of the Beam Energy Scan II program. To scrape beam halo effectively at the fixed target which is 2.05 m away from the center of the STAR detectors, lattice design with relative large beta function at STAR was implemented at the two lower energies. The kickers of the base-band tune (BBQ) measurement system were engaged to dilute the beam transversely to maintain the event rate except for 31.2 GeV/nucleon. In addition, beam orbit control, tune and chromaticity adjustments were used to level the event rate. This paper will review the operational experience of RHIC in fixed target mode at various energies.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLO05  
About • paper received ※ 21 August 2019       paper accepted ※ 15 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYBA1 Status of the CBETA Cornell-BNL ERL Prototype 923
 
  • K.E. Deitrick, N. Banerjee, A.C. Bartnik, J.A. Crittenden, L. Cultrera, J. Dobbins, C.M. Gulliford, G.H. Hoffstaetter, W. Lou, P. Quigley, D. Sagan, K.W. Smolenski, D. Widger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.S. Berg, S.J. Brooks, R.L. Hulsart, R.J. Michnoff, S. Peggs, D. Trbojevic
    BNL, Upton, New York, USA
 
  CBETA, the Cornell-BNL ERL Test Accelerator, is an SRF multi-turn ERL which has been commissioned in the one-turn configuration from March to July 2019. During this time, the project has demonstrated an energy acceptance of 1.5 in the FFA arc, high-transmission energy recovery performance, and increased the CBETA energy-recovered maximum average current.  
slides icon Slides THYBA1 [11.605 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THYBA1  
About • paper received ※ 28 August 2019       paper accepted ※ 06 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZBA5 First Electron Cooling of Hadron Beams Using a Bunched Electron Beam 957
 
  • A.V. Fedotov, Z. Altinbas, M. Blaskiewicz, J.M. Brennan, D. Bruno, J.C. Brutus, M.R. Costanzo, K.A. Drees, W. Fischer, J.M. Fite, M. Gaowei, D.M. Gassner, X. Gu, J. Halinski, K. Hamdi, L.R. Hammons, T. Hayes, R.L. Hulsart, P. Inacker, J.P. Jamilkowski, Y.C. Jing, P.K. Kankiya, D. Kayran, J. Kewisch, D. Lehn, C.J. Liaw, C. Liu, J. Ma, G.J. Mahler, M. Mapes, A. Marusic, K. Mernick, C. Mi, R.J. Michnoff, T.A. Miller, M.G. Minty, S.K. Nayak, L.K. Nguyen, M.C. Paniccia, I. Pinayev, S. Polizzo, V. Ptitsyn, T. Rao, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, L. Smart, K.S. Smith, H. Song, A. Sukhanov, R. Than, P. Thieberger, S.M. Trabocchi, J.E. Tuozzolo, P. Wanderer, E. Wang, G. Wang, D. Weiss, B.P. Xiao, T. Xin, W. Xu, A. Zaltsman, H. Zhao, Z. Zhao
    BNL, Upton, New York, USA
 
  Funding: Work supported by the U.S. Department of Energy.
The Low Energy RHIC electron Cooler (LEReC) was recently constructed and commissioned at BNL. The LEReC is the first electron cooler based on the RF acceleration of electron bunches (previous electron coolers all used DC beams). Bunched electron beams are necessary for cooling hadron beams at high energies. The challenges of such an approach include generation of electron beams suitable for cooling, delivery of electron beams of the required quality to the cooling sections without degradation of beam emittances and energy spread, achieving required small angles between electrons and ions in the cooling sections, precise energy matching between the two beams, high-current operation of the electron accelerator, as well as several physics effects related to bunched beam cooling. Following successful commissioning of the electron accelerator in 2018, the focus of the LEReC project in 2019 was on establishing electron-ion interactions and demonstration of cooling process using electron energy of 1.6MeV (ion energy of 3.85GeV/n), which is the lowest energy of interest. Here we report on the first demonstration of Au ion cooling in RHIC using this new approach.
 
slides icon Slides THZBA5 [16.417 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THZBA5  
About • paper received ※ 16 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)