Author: Mi, C.
Paper Title Page
WEPLH11 RHIC Quench Protection Diode Radiation Damage 831
 
  • K.A. Drees, O. Biletskyi, D. Bruno, A. Di Lieto, J. Escallier, G. Heppner, C. Mi, T. Samms, J. Sandberg
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Each of RHIC’s superconducting magnets is protected by a silicon quench protection diode (QPD). In total, RHIC has over 800 diodes installed inside the cryostat close to the vacuum pipe~[RHICconfig]. After years of operation with high energy heavy ion beams we experienced a first permanently damaged QPD in the middle of our FY2016 Au Au run and a second damaged diode in the following year. In 2016 the run had to be interrupted by 19 days to replace the diode, in 2017 RHIC could still operate with a reduced ramping speed of the superconducting magnets. Both diodes were replaced and examined "cold" as well as "warm". This paper reports on what we have learned so far about the conditions leading up to the damage as well as the damage itself.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH11  
About • paper received ※ 23 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZBA5 First Electron Cooling of Hadron Beams Using a Bunched Electron Beam 957
 
  • A.V. Fedotov, Z. Altinbas, M. Blaskiewicz, J.M. Brennan, D. Bruno, J.C. Brutus, M.R. Costanzo, K.A. Drees, W. Fischer, J.M. Fite, M. Gaowei, D.M. Gassner, X. Gu, J. Halinski, K. Hamdi, L.R. Hammons, T. Hayes, R.L. Hulsart, P. Inacker, J.P. Jamilkowski, Y.C. Jing, P.K. Kankiya, D. Kayran, J. Kewisch, D. Lehn, C.J. Liaw, C. Liu, J. Ma, G.J. Mahler, M. Mapes, A. Marusic, K. Mernick, C. Mi, R.J. Michnoff, T.A. Miller, M.G. Minty, S.K. Nayak, L.K. Nguyen, M.C. Paniccia, I. Pinayev, S. Polizzo, V. Ptitsyn, T. Rao, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, L. Smart, K.S. Smith, H. Song, A. Sukhanov, R. Than, P. Thieberger, S.M. Trabocchi, J.E. Tuozzolo, P. Wanderer, E. Wang, G. Wang, D. Weiss, B.P. Xiao, T. Xin, W. Xu, A. Zaltsman, H. Zhao, Z. Zhao
    BNL, Upton, New York, USA
 
  Funding: Work supported by the U.S. Department of Energy.
The Low Energy RHIC electron Cooler (LEReC) was recently constructed and commissioned at BNL. The LEReC is the first electron cooler based on the RF acceleration of electron bunches (previous electron coolers all used DC beams). Bunched electron beams are necessary for cooling hadron beams at high energies. The challenges of such an approach include generation of electron beams suitable for cooling, delivery of electron beams of the required quality to the cooling sections without degradation of beam emittances and energy spread, achieving required small angles between electrons and ions in the cooling sections, precise energy matching between the two beams, high-current operation of the electron accelerator, as well as several physics effects related to bunched beam cooling. Following successful commissioning of the electron accelerator in 2018, the focus of the LEReC project in 2019 was on establishing electron-ion interactions and demonstration of cooling process using electron energy of 1.6MeV (ion energy of 3.85GeV/n), which is the lowest energy of interest. Here we report on the first demonstration of Au ion cooling in RHIC using this new approach.
 
slides icon Slides THZBA5 [16.417 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THZBA5  
About • paper received ※ 16 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)