Author: Lin, F.
Paper Title Page
MOOHC2 The US Electron Ion Collider Accelerator Designs 1
 
  • A. Seryi, S.V. Benson, S.A. Bogacz, P.D. Brindza, M.W. Bruker, A. Camsonne, E. Daly, P. Degtiarenko, Y.S. Derbenev, M. Diefenthaler, J. Dolbeck, R. Ent, R. Fair, D. Fazenbaker, Y. Furletova, B.R. Gamage, D. Gaskell, R.L. Geng, P. Ghoshal, J.M. Grames, J. Guo, F.E. Hannon, L. Harwood, S. Henderson, H. Huang, A. Hutton, K. Jordan, D.H. Kashy, A.J. Kimber, G.A. Krafft, R. Lassiter, R. Li, F. Lin, M.A. Mamun, F. Marhauser, R. McKeown, T.J. Michalski, V.S. Morozov, P. Nadel-Turonski, E.A. Nissen, G.-T. Park, H. Park, M. Poelker, T. Powers, R. Rajput-Ghoshal, R.A. Rimmer, Y. Roblin, D. Romanov, P. Rossi, T. Satogata, M.F. Spata, R. Suleiman, A.V. Sy, C. Tennant, H. Wang, S. Wang, C. Weiss, M. Wiseman, W. Wittmer, R. Yoshida, H. Zhang, S. Zhang, Y. Zhang, Z.W. Zhao
    JLab, Newport News, Virginia, USA
  • D.T. Abell, D.L. Bruhwiler, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, W. Guo, Y. Hao, A. Hershcovitch, H. Huang, W.A. Jackson, J. Kewisch, A. Kiselev, V. Litvinenko, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, C. Montag, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, E. Wang, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • D.P. Barber
    DESY, Hamburg, Germany
  • I.V. Bazarov
    Cornell University, Ithaca, New York, USA
  • G.I. Bell, J.R. Cary
    Tech-X, Boulder, Colorado, USA
  • Y. Cai, Y.M. Nosochkov, A. Novokhatski, G. Stupakov, M.K. Sullivan, C.-Y. Tsai
    SLAC, Menlo Park, California, USA
  • Z.A. Conway, M.P. Kelly, B. Mustapha, U. Wienands, A. Zholents
    ANL, Lemont, Illinois, USA
  • S.U. De Silva, J.R. Delayen, H. Huang, C. Hyde, S. Sosa, B. Terzić
    ODU, Norfolk, Virginia, USA
  • K.E. Deitrick, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • V.G. Dudnikov, R.P. Johnson
    Muons, Inc, Illinois, USA
  • B. Erdelyi, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • J.D. Fox
    Stanford University, Stanford, California, USA
  • J. Gerity, T.L. Mann, P.M. McIntyre, N. Pogue, A. Sattarov
    Texas A&M University, College Station, USA
  • E. Gianfelice-Wendt, S. Nagaitsev
    Fermilab, Batavia, Illinois, USA
  • Y. Hao, P.N. Ostroumov, A.S. Plastun, R.C. York
    FRIB, East Lansing, Michigan, USA
  • T. Mastoridis
    CalPoly, San Luis Obispo, California, USA
  • J.D. Maxwell, R. Milner, M. Musgrave
    MIT, Cambridge, Massachusetts, USA
  • J. Qiang, G.L. Sabbi
    LBNL, Berkeley, California, USA
  • D. Teytelman
    Dimtel, Redwood City, California, USA
  • R.C. York
    NSCL, East Lansing, Michigan, USA
 
  With the completion of the National Academies of Sciences Assessment of a US Electron-Ion Collider, the prospects for construction of such a facility have taken a step forward. This paper provides an overview of the two site-specific EIC designs: JLEIC (Jefferson Lab) and eRHIC (BNL) as well as brief overview of ongoing EIC R&D.  
slides icon Slides MOOHC2 [14.774 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOOHC2  
About • paper received ※ 29 August 2019       paper accepted ※ 04 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZBA3 A High-Energy Design for JLEIC Ion Complex 341
 
  • B. Mustapha, J.L. Martinez Marin
    ANL, Lemont, Illinois, USA
  • Y.S. Derbenev, F. Lin, V.S. Morozov, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: This work was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357 for ANL and by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
A recent assessment of the scientific merit for a future Electron Ion Collider (EIC) in the US, by the National Academy of Sciences, found that such a facility would be unique in the world and would answer science questions that are compelling, fundamental, and timely. This assessment confirmed the recommendations of the 2015 Nuclear Science Advisory Committee for an EIC with highly polarized beams of electrons and ions, sufficiently high luminosity and variable center-of-mass (CM) energy. The baseline design of Jefferson Lab Electron-Ion Collider (JLEIC) has been updated to 100 GeV CM energy, corresponding to 200 GeV proton energy. We here present a high-energy design for the JLEIC ion complex. It consists of a 135 MeV injector linac, a 6-GeV non figure-8 pre-booster ring and a 40-GeV large ion booster, which could also serve as electron storage ring (e-ring). The energy choice in the accelerator chain is beneficial for a future upgrade to 140 GeV CM energy. The large booster is designed with the same shape and size of the original e-ring allowing for the option of building separate electron and ion rings by stacking them in the same tunnel along with the ion collider ring.
 
slides icon Slides TUZBA3 [5.435 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUZBA3  
About • paper received ※ 03 September 2019       paper accepted ※ 25 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZBA4 Interaction Region Magnets for Future Electron-Ion Collider at Jefferson Lab 345
TUPLO13   use link to see paper's listing under its alternate paper code  
 
  • R. Rajput-Ghoshal, C. Hutton, F. Lin, T.J. Michalski, V.S. Morozov, M. Wiseman
    JLab, Newport News, Virginia, USA
 
  The Jefferson Lab Electron Ion Collider (JLEIC) is a proposed new machine for nuclear physics research. It uses the existing CEBAF accelerator as a full energy injector to deliver 3 to 12 GeV electrons into a new electron collider ring. An all new ion accelerator and collider complex will deliver up to 200 GeV protons. The machine has luminosity goals of 1034 cm-2 ses−1. The whole detector region including forward detection covers about 80 meters of the JLEIC complex. The interaction region design has recently been optimized to accommodate 200 GeV proton energy using conventional NbTi superconducting magnet technology. This paper will describe the requirements and preliminary designs for both the ion and electron beam magnets in the most complex 32 m long interaction region (IR) around the interaction point (IP). The interaction region has over thirty-seven superconducting magnets operating at 4.5K; these include dipoles, quadrupoles, skew-quadrupoles, solenoids, horizontal and vertical correctors and higher order multipole magnets. The paper will also discuss the electromagnetic interaction between these magnets.  
slides icon Slides TUZBA4 [6.444 MB]  
poster icon Poster TUZBA4 [1.549 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUZBA4  
About • paper received ※ 27 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLM13 Two-Energy Storage-Ring Electron Cooler for Relativistic Ion Beams 399
SUPLM07   use link to see paper's listing under its alternate paper code  
 
  • B. Dhital, J.R. Delayen, G.A. Krafft
    ODU, Norfolk, Virginia, USA
  • J.R. Delayen, Y.S. Derbenev, D. Douglas, G.A. Krafft, F. Lin, V.S. Morozov, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  An electron beam based cooling system for the ion beam is one of the commonly used approaches. The proposed two’energy storage-ring electron cooler consists of damping and cooling sections at markedly different energies connected by an energy recovering superconducting RF structure. The parameters in the cooling and damping sections are adjusted for optimum cooling of a stored ion beam and for optimum damping of the electron beam respectively. This paper briefly describes a two cavities model along with a third cavity model to accelerate and decelerate the electron beam in two energy storage ring. Based on our assumed value of equilibrium emittance shows that these models give a bunch length of the order of cm and energy spread of the order of 〖10〗-5 in the cooling section which are required parameters for the better cooling. Numerical calculations along with elegant simulation are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM13  
About • paper received ※ 28 August 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLO15 Multipole Effects on Dynamic Aperture in JLEIC Ion Collider Ring 559
 
  • B.R. Gamage, F. Lin, T.J. Michalski, V.S. Morozov, R. Rajput-Ghoshal, M. Wiseman
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y.M. Nosochkov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • G.L. Sabbi
    LBNL, Berkeley, California, USA
 
  Funding: This material is based upon work supported by the U.S. DoE under Contracts No. DE-AC05-06OR23177, DE-AC02-76SF00515, and DEAC03-76SF00098.
In a collider, stronger focusing at the interaction point (IP) for low beta-star and high luminosity produces large beams at final focusing quadrupoles (FFQs). To achieve the high luminosity requirement in the Jefferson Lab Electron-Ion Collider (JLEIC), the interaction region (IR) beta functions peak at 4.2 km in downstream FFQs. These large beta functions and FFQ multipoles reduce the dynamic aperture (DA) of the ring. A study of the multipole effects on the DA was performed to determine limits on multipoles, and to include a multipole compensation scheme to increase the DA and beam lifetime.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLO15  
About • paper received ※ 28 August 2019       paper accepted ※ 04 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLS11 Simulation of Transparent Spin Experiment in RHIC 789
 
  • H. Huang, Y.S. Derbenev, F. Lin, V.S. Morozov, Y. Zhang
    JLab, Newport News, Virginia, USA
  • P. Adams, H. Huang, F. Méot, V. Ptitsyn, W.B. Schmidke
    BNL, Upton, New York, USA
  • Y. Filatov
    MIPT, Dolgoprudniy, Moscow Region, Russia
  • A.M. Kondratenko, M.A. Kondratenko
    Science and Technique Laboratory Zaryad, Novosibirsk, Russia
 
  Funding: Work supported by the U.S. DOE under Contracts No. DE-AC05-06OR23177 and DE-AC02-98CH10886.
The transparent spin mode has been proposed as a new technique for preservation and control of the spin polari-zation of ion beams in a synchrotron. The ion rings of the proposed Jefferson Lab Electron-Ion Collider (JLEIC) adopted this technique in their figure-8 design. The transparent spin mode can also be setup in a racetrack with two identical Siberian snakes. There is a proposal to test the predicted features of the spin transparent mode in Relativistic Heavy Ion Collider (RHIC), which already has all of the necessary hardware capabilities. We have earlier analytically estimated the setup parameters and developed a preliminary experimental plan. In this paper we describe simulation setup and benchmarking for the proposed experiment using a Zgoubi model of RHIC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLS11  
About • paper received ※ 03 September 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)