Author: Elliott, K.
Paper Title Page
WEPLM62 First Cold Test Results of a Medium-Beta 644 MHz Superconducting 5-Cell Elliptical Cavity for the FRIB Energy Upgrade 731
SUPLS07   use link to see paper's listing under its alternate paper code  
 
  • K.E. McGee, B.W. Barker, K. Elliott, A. Ganshyn, W. Hartung, S.H. Kim, P.N. Ostroumov, J.T. Popielarski, A. Taylor, C. Zhang
    FRIB, East Lansing, Michigan, USA
  • M.P. Kelly, T. Reid
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by Michigan State University.
The superconducting linac for the Facility for Rare Isotope Beams (FRIB) will accelerate ions to 200 MeV per nucleon, with the possibility of a future energy upgrade to 400 MeV per nucleon via additional cavities. A 5-cell superconducting β = 0.65 elliptical cavity was designed for this purpose. Two unjacketed 5-cell niobium cavities were fabricated; the first of these was Dewar tested in February 2019. The surface preparation was bulk electropolishing (EP, 150 µm), hydrogen degassing (600°C, 10 hours), light EP (20 µm), clean-room high-pressure water rinsing, and in-situ baking (120°C, 48 hours). We achieved Q0 = 2·1010, equivalent to Rs = 10 nΩ, at the design gradient of 17.5 MV/m. The cavity was tested in a newly refurbished FRIB test Dewar, equipped with a variable input coupler.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLM62  
About • paper received ※ 02 September 2019       paper accepted ※ 19 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLH09 FRIB Driver Linac Integration to be ready for Phased Beam Commissioning 823
 
  • H. Ao, S. Beher, N.K. Bultman, F. Casagrande, C. Compton, J.C. Curtin, K.D. Davidson, K. Elliott, V. Ganni, A. Ganshyn, P.E. Gibson, I. Grender, W. Hartung, L. Hodges, K. Holland, A. Hussain, M. Ikegami, S. Jones, P. Knudsen, S.M. Lidia, G. Machicoane, S.J. Miller, D.G. Morris, P.N. Ostroumov, J.T. Popielarski, L. Popielarski, J. Priller, T. Russo, K. Saito, S. Stanley, D.R. Victory, X. Wang, J. Wei, M. Xu, T. Xu, Y. Yamazaki, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
 
  Funding: Work supported by the U.S. Department of Energy (DOE) Office of Science under Cooperative Agreement DE-SC0000661
The driver linac for Facility for Rare Isotope Beams (FRIB) will accelerate all stable ion beams from proton to uranium beyond 200 MeV/u with beam powers up to 400 kW. The linac now consists of 104 superconducting quarter-wave resonators (QWR), which is the world largest number of low-beta SRF cavities operating at an accelerator facility. The first 3 QWR cryomodules (CM) (β = 0.041) were successfully integrated with cryogenics and other support systems for the 2nd Accelerator Readiness Review (ARR). The 3rd ARR scope that includes 11 QWR CM (β=0.085) and 1 QWR matching CM (β=0.085) was commissioned on schedule by January 2019, and then we met the Key Performance Parameters (KPP), accelerating Ar and Kr > 16 MeV/u at this stage, in a week upon the ARR authorization. We examine a variety of key factors to the successful commissioning, such as component testing prior to system integration, assessment steps of system/device readiness, and phased commissioning. This paper also reports on the integration process of the β=0.085 CMs including the test results, and the current progress on β=0.29 and 0.53 CMs in preparation for the upcoming 4th ARR.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH09  
About • paper received ※ 02 September 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)