Paper | Title | Page |
---|---|---|
MOZBA2 | Operational Experience with Superconducting Undulators at APS | 57 |
|
||
Funding: Work supported by U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. APS has been developing superconducting undulators for over a decade. Presently, two planar and one helical device are in operation in the APS storage ring, and a number of devices will be installed in the APS Upgrade ring. All superconducting devices perform with very high reliability and have very minor effect on the storage ring operation. To achieve this, a number of storage ring modifications had to be done, such as introduction of the beam abort system to eliminate device quenches during beam dumps, and lattice and orbit modifications to allow for installation of the small horizontal aperture helical device with magnet coils in the plane of synchrotron radiation. |
||
![]() |
Slides MOZBA2 [3.424 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOZBA2 | |
About • | paper received ※ 02 September 2019 paper accepted ※ 19 November 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPLM07 | Simulation of Beam Aborts for the Advanced Photon Source to Probe Material-Damage Limits for Future Storage Rings | 106 |
|
||
Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Damage to tungsten beam dumps has been observed in the Advanced Photon Source (APS), a 7-GeV, third-generation storage ring light source. This issue is expected to be much more severe in the APS Upgrade, owing to doubling of the stored charge and much lower emittance. An experiment was conducted in the existing APS ring to test several possible dump materials and also assess the accuracy of predictions of beam-induced damage. Prior to the experiments, extensive beam abort simulations were performed with ELEGANT to predict thresholds for material damage, dependence on vertical beam size, and even the size of the trenches expected to be created by the beam. This paper presents the simulation methods, simple models for estimating damage, and results. A companion paper in this conference presents experimental results. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM07 | |
About • | paper received ※ 27 August 2019 paper accepted ※ 31 August 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPLM10 | Simulation Study With Septum Field Map for the APS Upgrade | 116 |
|
||
Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. One of the biggest challenges faced by the Advanced Photon Source Upgrade injection system design is the septum magnet. Not only does the required leakage field inside the stored beam chamber need to be smaller than for the present ring, the magnet has to be slightly tilted about the z-axis to provide a gentle vertical bend that brings the injected beam trajectory close to y=0 when it passes through the storage ring quadrupole magnets upstream of the straight section. This paper describes the coordinate system transformation necessary to properly model the magnet from field maps. The main field is checked by tracking the injected beam backwards, while leakage fields are included in dynamic aperture simulation and beam lifetime calculation. Simulation results show that the magnet design satisfies the physics requirement. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM10 | |
About • | paper received ※ 28 August 2019 paper accepted ※ 31 August 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPLM12 | Progress on the Injection Transport Line Design for the APS Upgrade | 120 |
|
||
Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. An on-axis vertical injection scheme was adopted for the Advanced Photon Source upgrade multi-bend achromat lattice. As the design of the injection scheme has become more detailed, the booster to storage ring transport line (BTS) has advanced, including effects such as the septum field map and stray fields of storage ring magnets. Various error effects are simulated for setting specifications and predicting expected performance. The beam diagnostic scheme, including emittance measurement, is incorporated into the beamline design. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM12 | |
About • | paper received ※ 28 August 2019 paper accepted ※ 31 August 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPLM14 | Studies of Beam Dumps in Candidate Horizontal Collimator Materials for the Advanced Photon Source Upgrade Storage Ring | 128 |
|
||
Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 We present the results of experiments intended to show the effects of beam dumps on candidate collimator materials for the Advanced Photon Source Upgrade (APS-U) storage ring (SR). Due to small transverse electron beam sizes, whole beam loss events are expected to yield dose levels in excess of 10 MGy in beam-facing components, pushing irradiated regions into a hydrodynamic regime. Whole beam aborts have characteristic time scales ranging from 100s of ps to 10s of microseconds which are either much shorter than or roughly equal to thermal diffusion times. Aluminum and titanium alloy test pieces are each exposed to a series of beam aborts of varying fill pattern and charge. Simulations suggest the high energy/power densities are likely to lead to phase transitions and damage in any material initially encountered by the beam. We describe measurements used to characterize the beam aborts and compare the results with those from the static particle-matter interaction code, MARS; we also plan to explore wakefield effects. Beam dynamics modeling, done with elegant is discussed in a companion paper at this conference. The goal of this work is to guide the design of APS-U SR collimators. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM14 | |
About • | paper received ※ 27 August 2019 paper accepted ※ 04 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPLE08 | Parallel Tracking-Based Modeling of Gas Scattering and Loss Distributions in Electron Storage Rings | 901 |
|
||
Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Estimation of gas scattering lifetimes in storage rings is typically done using a simple approach that can readily be performed by hand. A more sophisticated approach uses linear mapping of the angular dynamic acceptance around the ring and allows including variation of gas pressure and composition*. However, neither approach is appropriate for highly nonlinear lattices, in which the angular acceptance does not map according to the linear optics. Further, these approaches provide no detailed information about the location of losses. To address these limitations, a tracking-based approach was implemented in the program Pelegant**. We describe the implementation and performance of this method, as well as several applications to the Advanced Photon Source Upgrade. * M. Borland, J. Carter, H. Cease, and B. Stillwell, Proc. IPAC 2015, 546. ** Y. Wang and M. Borland, AIP Conf. Proc. 877, 241 (2006). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLE08 | |
About • | paper received ※ 27 August 2019 paper accepted ※ 04 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THYBA3 | Use of Solid Xenon as a Beam Dump Material for 4th-Generation Storage Rings | 927 |
|
||
Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 Damage to tungsten beam dumps has been observed in the Advanced Photon Source due to the high charge (368 nC/store), high energy (7 GeV), and short loss time (about 15 microseconds). Owing to the higher charge (736 nC/store) and much lower emittance (42 pm vs 2.5 nm), this issue is expected to be much more severe in the APS Upgrade. This strongly suggests that such dumps are necessary in 4th-generation electron storage rings to prevent catastrophic damage to vacuum systems when, for example, rf systems trip. However, it also implies that the dump will be damaged by each strike and will thus need to be "refreshed," perhaps by moving the dump surface vertically to expose undamaged material. Xenon, a gas that solidifies at 161K, is an intriguing possibility for a beam dump material. Calculations suggest that as the beam spirals in toward a dump in a high-dispersion area the tails of the electron beam would vaporize sufficient xenon to rapidly diffuse the beam and render it harmless. The dump surface could be periodically reformed without breaking vacuum. Issues with the concept include the need to protect the frozen xenon from wakefield heating. |
||
![]() |
Slides THYBA3 [2.451 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THYBA3 | |
About • | paper received ※ 27 August 2019 paper accepted ※ 04 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |