Paper | Title | Page |
---|---|---|
TUYBA4 | Optimization of an SRF Gun Design for UEM Applications | 305 |
|
||
Funding: DOE contract DE-SC0018621 Benefiting from the rapid progress on RF photocathode gun technologies in the past two decades, the development of MeV-range ultrafast electron diffraction/microscopy (UED and UEM) has been identified as an enabling instrumentation, which may lead to breakthroughs in fundamental science and applied technologies *. Euclid is designing an SRF cavity as the UEM electron gun. As implementing a solenoid for emittance compensation in the gun is limited by the superconductivity performance and available space, the geometry of the first 0.3 cell of the cavity is optimized for transverse focusing and emittance reduction. *: T. Chase, et al, "Ultrafast electron diffraction from non- equilibrium phonons in femtosecond laser heated Au films." Applied Physics Letters, 2016 |
||
![]() |
Slides TUYBA4 [7.583 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUYBA4 | |
About • | paper received ※ 30 August 2019 paper accepted ※ 04 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPLH08 | X-Ray and Charged Particle Detection by Detuning of a Microwave Resonator | 503 |
|
||
Funding: DOE SBIR Charged particle detection is important for beam alignment, beam loss and background control. In case of halo detection, traditional wire scanner measurement utilizing carbon or tungsten wires is limited by the damage threshold of these materials. In this paper we present an electrodeless method to measure halo with a diamond scraper. This measurement utilizes a microwave resonator placed around the diamond scraper which is sensitive to charged particle-induced conductivity. Due to this transient induced conductivity in the dielectric, a microwave coupling to the resonator changes. Diamond in this case is chosen as a radiation hard material with excellent thermal properties. The absence of electrodes makes the device robust under the beam. The same measurement can be done for x-ray flux monitoring which is important for measurement feedback and calibration at modern x-ray light sources. In this case x-rays passing through the diamond sensing element enable a photo-induced conductivity and that in turn detunes the cavity placed around the diamond. Diamond being a low-Z material allows for in-line x-ray flux measurement without significant beam attenuation. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLH08 | |
About • | paper received ※ 28 August 2019 paper accepted ※ 05 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPLM21 | High-Quality Resonators for Quantum Information Systems | 690 |
|
||
We analyze ultra-high-quality factor resonators for quantum computer architectures. As qubit operation requires external DC fields, we started our study with a conventional closed copper cavity which naturally allows external magnetic field. In order to increase quality factor and to keep DC magnetic field control at a level less than critical field, an open SRF resonator promises much higher quality. The next step resonator is a photonic band gap (PBG) resonator. This resonator allows easy external either magnetic or electric field control. It consists of a periodic 3D set of sapphire rods assembled between two superconducting plates. The PBG resonator exploits unique properties of the crystalline sapphire. Tangent delta for sapphire in X-band is reported at 10-9 ’ 10-10 at 4 K. That is why, the Q-factor of the sapphire PBG resonator can be expected as high as 10 billions at mK temperatures which provides long relaxation times (dephasing etc.). The established PBG design implies obtaining a large Purcell factor, i.e. large ratio of quality to mode volume which is important parameter to establish strong interaction of a qubit with the cavity mode rather than RF noise. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLM21 | |
About • | paper received ※ 27 August 2019 paper accepted ※ 01 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THYBB3 | Compact 1 MeV Electron Accelerator | 942 |
|
||
The cost of the accelerating structure in modern medical accelerators and industrial linacs is substantial. This comes to no surprise, as the accelerating waveguide is a set of diamond-turned copper resonators brazed together. Such a multistep manufacturing process is not only expensive, but also prone to manufacturing errors, which decrease the production yield. In the big picture, the cost of the accelerating waveguide precludes the use of accelerators as a replacement option for radioactive sources. Here we present a new cheap brazeless electron accelerating structure made out of two copper plates tightened together by means of an additional stainless steel plate. This additional plate, having sharp blades, is aimed to provide vacuum inside the whole system. The designed X-band 1 MeV structure consists of eight different length cells and accelerates field-emitted electrons from copper cathode. The structure is fed by 9 GHz magnetron which produces 240 kW, 1 µs pulses. The average gradient is as high as 10.6 MV/m, maximum surface fields do not exceed 50 MV/m. | ||
![]() |
Slides THYBB3 [19.559 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THYBB3 | |
About • | paper received ※ 27 August 2019 paper accepted ※ 15 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |