Author: Xu, S.Y.
Paper Title Page
TUPAL002 Numerical Calibration of the Injection Bump Sizes During the Beam Commissioning for CSNS 1011
 
  • M.Y. Huang, S. Wang, S.Y. Xu
    IHEP, Beijing, People's Republic of China
 
  In order to control the strong space charge effects, which cause large beam loss during the injection and acceleration processes, phase space painting method was used for injecting a small emittance beam from the linac into the large acceptance of the Rapid Cycling Synchrotron (RCS). During the beam commissioning, in order to control and optimize the painting results, the positions and ranges of the horizontal and vertical painting should be adjusted accurately. Therefore, the numerical calibration of the injection bump sizes was very important and need to be done as soon as possible. In this paper, a method to calibrate the horizontal and vertical bump sizes was presented and applied to China Spallation Neutron Source (CSNS). The numerical calibration results would be given and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL005 Study on the Fixed Point Injection during the Beam Commissioning for CSNS 1017
 
  • M.Y. Huang, H.C. Liu, S. Wang, S.Y. Xu
    IHEP, Beijing, People's Republic of China
 
  In order to inject the H beam into the Rapid Cycling Synchrotron (RCS) of China Spallation Neutron Source (CSNS) accurately, different injection methods were used in different periods of beam commissioning for CSNS. In the early stage of beam commissioning, since the precise relative position of the injection beam and circular beam was unknown and the injection beam power was relatively small, the fixed point injection method was used. In this paper, the fixed point injection method is studied in detail and the beam commissioning results are given and discussed. In addition, a method to adjust the timing of the injection pulse power is presented and confirmed by the beam commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)