Author: Wu, T.
Paper Title Page
THPML062 A Beam Based Method to Optimize the SBPM System 4780
SUSPF095   use link to see paper's listing under its alternate paper code  
 
  • J. Chen
    SINAP, Shanghai, People's Republic of China
  • L.W. Lai, Y.B. Leng, T. Wu, R.X. Yuan
    SSRF, Shanghai, People's Republic of China
 
  For the electron accelerator, it is hoped that the trajec-tory of the beam can pass through the magnetic center of the quadrupole to minimize the orbital motion caused by the instability of the power supply. The relative deviation between the magnetic center of quadrupole and the elec-tric center of adjacent BPM is measured by electron beam usually in various accelerator facilities. But for the stripline BPM (SBPM) system, in order to achieve the best performance, the beam trajectory should also need to pass through the electrical center of the SBPM system. In this paper, a beam based method to optimize the SBPM system was proposed, the intensity of the magnet power was scanned to change the beam position in two-dimension and combine the change trend of the sum signal of adjacent SBPM to find out the relative deviation of BPM electric center and mechanical center. Relevant beam experiment work on the Shanghai Soft X-ray free electron laser (SXFEL) and the benefit of this method will be addressed as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML067 SXFEL Linac BPM System Development and Performance Evaluation 4794
SUSPF094   use link to see paper's listing under its alternate paper code  
 
  • F.Z. Chen, T. Wu
    SSRF, Shanghai, People's Republic of China
  • J. Chen, L.W. Lai, Y.B. Leng, L.Y. Yu, R.X. Yuan
    SINAP, Shanghai, People's Republic of China
 
  Shanghai Soft X-ray Free Electron Laser (SXFEL) is a test facility to study key technologies and new FEL physics. In order to deliver high quality electron beams to the undulator section, a high resolution (better than 10 microns with 200pC beam) Linac beam position monitor system has been developed. The system consists of stripline pickup and custom designed DBPM processor. The hardware and software architecture will be introduced in this paper. The online performance evaluation results will be presented as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML068 Upgrade of Bunch Phase Monitor at SSRF Storage Ring 4797
 
  • Y.M. Zhou, Y.B. Leng, T. Wu, N. Zhang
    SSRF, Shanghai, People's Republic of China
 
  Beam instability is a serious problem for physics in beam diagnosis technology. With regard to the evaluation of longitudinal phase oscillations during the transient injection process, bunch-by-bunch phase measurement is a useful tool for studying the behavior of the refilled bunches. A new upgraded beam phase monitor system with 1.2GHz bandwidth PXI waveform digitizer has been developed at Shanghai synchrotron radiation source (SSRF). Bunch-by-bunch phase information, retrieved from button pickup signals, is calculated by the zero-crossing detection method with the best phase resolution of 0.4ps. The refilled bunches can be separated from the stored ones, and the longitudinal offset of each refilled bunch has been measured. Several groups of experiments have been performed to verify the repeatability of bunch-by-bunch phase measurement, and some results regarding refilled bunches will be discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML071 Upgrade of Digital BPM Processor at DCLS and SXFEL 4807
 
  • L.W. Lai, F.Z. Chen, Y.B. Leng, T. Wu, Y.B. Yan
    SSRF, Shanghai, People's Republic of China
  • J. Chen
    SINAP, Shanghai, People's Republic of China
 
  A digital BPM processor has been developed at 2016 in SINAP for DCLS and SXFEL, which are FEL facilities built in China. The stripline BPM and cavity BPM processors share the same hardware platform and firmware, but the processing algorithms implemented in EPICS IOC on the ARM CPU are different. The capability of the ARM limits the processing speed to 10 bunches per second. Now the bunch rate of DCLS and SXFEL are going to increase from 10Hz to 50Hz. To meet the higher processing speed requirements, the processor firmware and software are upgraded in 2017. All BPM signal processing algorithms are implemented in FPGA, and EPICS IOC reads results only. After the upgrade, the processing speed reach 120 bunches per second. And this is also a good preparation for future Shanghai Hard-X ray FEL, which bunch rate is about 1MHz.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)