Author: Wendt, M.
Paper Title Page
MOPMF058 Status of the LHC Schottky Monitors 247
 
  • T. Tydecks, D. Alves, T.E. Levens, M. Wendt, J. Wenninger
    CERN, Geneva, Switzerland
 
  The Large Hadron Collider (LHC) features four transverse Schottky monitors detecting Schottky noise from the beam. From the Schottky noise signal, beam properties like tune, chromaticity, and bunch by bunch relative emittances, can be extracted. Being a non-destructive and purely parasitic method of measurement, the Schottky system is of great interest for real-time determination of beam chromaticities especially. Studies, including a dedicated machine development shift as well as parasitic measurements, concerning its capability to accurately measure the beam chromaticities are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF070 Commissioning of Beam Instrumentation at the CERN AWAKE Facility After Integration of the Electron Beam Line 1993
 
  • I. Gorgisyan, C. Bracco, S. Burger, S. Döbert, S.J. Gessner, E. Gschwendtner, L.K. Jensen, S. Jensen, S. Mazzoni, D. Medina, K. Pepitone, L. Søby, F.M. Velotti, M. Wendt
    CERN, Geneva, Switzerland
  • M. Cascella, S. Jolly, F. Keeble, M. Wing
    UCL, London, United Kingdom
  • V.A. Verzilov
    TRIUMF, Vancouver, Canada
 
  The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) is a project at CERN aiming to accelerate an electron bunch in a plasma wakefield driven by a proton bunch*. The plasma is induced in a 10 m long Rubidium vapour cell using a pulsed Ti:Sapphire laser, with the wakefield formed by a proton bunch from the CERN SPS. A 16 MeV electron bunch is simultaneously injected into the plasma cell to be accelerated by the wakefield to energies in GeV range over this short distance. After successful runs with the proton and laser beams, the electron beam line was installed and commissioned at the end of 2017 to produce and inject a suitable electron bunch into the plasma cell. To achieve the goals of the experiment, it is important to have reliable beam instrumentation measuring the various parameters of the proton, electron and laser beams such as transverse position, transverse profile as well as temporal synchronization. This contribution presents the status of the beam instrumentation in AWAKE, including the new instruments incorporated into the system for measurements with the electron beam line, and reports on the performance achieved during the AWAKE runs in 2017.
* Gschwendtner E., et al. "AWAKE, the Advanced Proton Driven Plasma Wakefield Experiment at CERN", NIM A 829 (2016)76-82
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF085 Upgrade of the CERN SPS Beam Position Measurement System 2047
 
  • M. Wendt, M. Barros Marin, A. Boccardi, T.B. Bogey, V. Kain, C. Moran Guizan, A. Topaloudis
    CERN, Geneva, Switzerland
  • I. Degl'Innocenti
    Università di Pisa, Pisa, Italy
 
  The CERN Super Proton Synchrotron (SPS) is a fast cycling hadron accelerator delivering protons with momenta of up to 450 GeV/c for the Large Hadron Collider (LHC), fixed target experiments and other users such as the AWAKE plasma acceleration experiment, and also used to accelerate heavy ions. This paper presents the upgrade initiative for the SPS beam position measurement system in the frame of the CERN LHC Injector Upgrade (LIU) project. The new SPS beam position read-out electronics will be based on logarithmic amplifiers, using signals provided by the 216 existing beam position monitors, the majority of which are based on split-plane 'shoebox' technology. It will need to cover a dynamic range sufficient to manage the wide range of SPS beam intensities and bunch formatting schemes to provide turn-by-turn and averaged beam orbits along the SPS acceleration cycles. In order to avoid long coaxial cables, the front-end electronics including the digitisation, will be located inside the accelerator tunnel, with optical transmission to surface processing electronics. This represents an additional challenge in terms of radiation tolerance of electronics components and materials.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF063 Identification of Imperfections in Impedance Shields on the SPS-QF Flanges via Non-Intrusive Measurements 3119
 
  • A. Farricker, P. Kramer, B.K. Popovic, E. Sunar, C. Vollinger, M. Wendt
    CERN, Geneva, Switzerland
 
  In order to achieve the highest beam intensities possible in the LHC the highest quality beam possible has to be supplied by the injector chain. The Super Proton Synchrotron (SPS) at CERN is the last accelerator in the injector chain of the LHC. One factor that is currently known to limit the intensity of the beam for injection to the LHC, is the longitudinal beam-coupling impedance in the SPS. One known source of multi-bunch instability is the vacuum flanges and campaigns to mechanically shield this source were completed in the year 2000. However, today it cannot be excluded that some of these shields may have partial or indeed full failures. Since these flanges are next to a QF magnet and are in most cases connected to a BPH (Beam Position Monitor Horizontal), it is possible to carry out via the BPH an in-situ measurement of the effectiveness of the shields. In this paper we present a methodology as well as measurement results taken with this non-intrusive in-situ method. From measurements, it is possible to identify if the flanges are without any impedance shield, equipped with either a fully functioning shield or a shield exhibiting non-ideal properties.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)