Paper | Title | Page |
---|---|---|
TUPAF025 | Multi-turn Study in FLUKA for the Design of CERN-PS Internal Beam Dumps | 724 |
|
||
The CERN Proton-Synchrotron (PS) accelerator is currently equipped with two internal beam dumps in operation since the 1970's. An upgrade is required to be able to withstand the beams that will be produced after the end of the LIU (LHC Injector Upgrade) project. For the design of the new dumps, the interaction and transport of beam and all secondary particles generated has been simulated using FLUKA. The working principle of the internal beam dump in the PS ring is very peculiar with respect to the other dumps in the CERN accelerator complex. A moving dump intercepts the circulating beam during few milliseconds like a fast scraper. The moving dump shaving the beam, the multi-turn transport of beam particles in the PS accelerator and a time-dependent energy deposition in the dump were modeled. The methodology and the results obtained in our studies for the dump core and downstream equipment will be reported in this contribution. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF025 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAF038 | Prototyping Activities for a New Design of CERN's Antiproton Production Target | 772 |
|
||
Antiprotons are produced at CERN by impacting intense proton beams of 26 GeV/c onto a high-Z water-cooled target. The current design consists in an Ir core target in a graphite matrix and inserted in a Ti-6Al-4V assembly. A new target design has been foreseen for operation after 2021 aiming at improving the operation robustness and antiproton production yield, triggering several R&D activities during the last years. First, both numerical (use of hydrocodes) and experimental approaches were carried out to study the core material response under extreme dynamic loading when impacted by the primary proton beam. The lessons learnt from these studies have been then applied to further prototyping and testing under proton beam impact at the CERN-HiRadMat facility. A first scaled prototype consisting in Ta rods embedded in an expanded graphite matrix was irradiated in 2017, while in 2018, the PROTAD experiment will test different real-scale AD-Target prototypes, in which the old water-cooled assembly is replaced by a more compact air-cooled one, and different core geometry and material configurations are investigated. This contribution details these prototyping and testing activities. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF038 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAF047 | Systematic Studies of Transverse Emittance Measurements Along the CERN PS Booster Cycle | 806 |
|
||
The CERN Proton Synchrotron Booster (PSB) will need to deliver 2 times the current brightness to the Large Hadron Collider (LHC) after the LHC Injectors Upgrade (LIU) to meet the High-Luminosity-LHC beam requirements. Beam intensity and transverse emittance are the key parameters to increase brightness, the latter being more difficult to manipulate. It is, therefore, crucial to monitor not only the emittance evolution between the different injectors but also along each acceleration cycle. To this end, detailed emittance measurements were carried out for the four rings of the PSB at various times in the cycle with different beam types. A thorough analysis of systematic error sources was conducted including multiple Coulomb scattering happening during profile measurements with wire scanners, where experimental and analytical treatments of the emittance blow-up were compared to FLUKA simulations. In order to properly account for the dispersive contribution, the full momentum spread profile was considered using a deconvolution method. We conclude with an assessment of this first comprehensive emittance evolution measurement along the PSB cycle. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF047 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMF084 | Design, Prototyping Activities and Beam Irradiation Test for the New nTOF Neutron Spallation Target | 2582 |
|
||
A third-generation neutron spallation target for the neutron time-of-flight facility at CERN (nTOF) is currently undergoing the design and prototyping stage. The new design aims at improving reliability, increasing beam intensity on target and avoiding issues encountered in the current generation target, in particular the contamination of the cooling system water with radioactive spallation products coming from washing out lead. After a preliminary design and an initial prototyping stage*, a baseline solution has been defined consisting in a pure lead target core contained in a Ti-6Al-4V cladding and embedded in a massive Pb block. A backup solution has also been defined, consisting in a Ta-cladded W core embedded in a Pb block. Both solutions are currently undergoing the detailed design stage. This contribution details the prototyping activity, the robustness studies for accidental scenarios and the design of a beam irradiation test on prototypes of the target core.
R. Esposito et al., "Design of the new CERN nTOF neutron spallation target: R&D and prototyping activities," in Proc. of IPAC'17, Copenhagen, May 2017. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF084 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMG001 | Engineering Design and Prototyping of the New LIU PS Internal Beam Dumps | 2600 |
|
||
For the LHC Injectors Upgrade (LIU) at CERN, the two Proton Synchrotron (PS) internal dumps are redesigned and upgraded for the new high intensity/brightness beams. The dumps are installed as active elements in the lattice in straight sections between the main bending magnets. The dumps are moved into the beam when requested by operation and shave the circulating beam turn by turn stopping the beam after about 6 ms. The shaving induces a very localized beam energy deposition on the dump surface in a thickness of tens of microns. A completely new approach has been developed with FLUKA to simulate beam shaving, coupled with ANSYS to define a new dump core design. This paper presents the design of the dump based on operational constraints such as cycling 200 000 times per year for 20 years, limited access for maintenance or reaching the beam trajectory in 150 ms. These constraints had a major impact on the technological choices. The new dump core is made of a low-density graphite block followed by a denser copper alloy (CuCr1Zr) one. Water circuits, bonded with Hot Isostatic Pressing, are cooling the core in ultra-high vacuum. The core is moved by a spring-based actuation mechanism. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMG001 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMG004 | Design of the Future High Energy Beam Dump for the CERN SPS | 2612 |
|
||
The future CERN Super Proton Synchrotron (SPS) internal dump (Target Internal Dump Vertical Graphite, known as TIDVG#5), to be installed during CERN's Long Shutdown 2 (2019-2020), will be required to intercept beam dumps from 26 to 450 GeV, with increased intensity and repetition rates with respect to its predecessor (TIDVG#4). The beam power to be managed by the dump will increase by approximately a factor of four; resulting in new challenges in terms of design in order to fulfil the highly demanding specification, which is based on guaranteeing a good performance of the machine with little or no limitations imposed by this device. This paper presents the proposed design, including material selection, manufacturing techniques and thermo-mechanical simulations under different operational scenarios expected during the lifetime of the device. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMG004 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |