Paper | Title | Page |
---|---|---|
TUPAF075 | Design Status of the LBNF/DUNE Beamline | 902 |
|
||
Funding: DOE, contract No. DE-AC02-07CH11359 The Long Baseline Neutrino Facility (LBNF) will utilize a beamline located at Fermilab to provide and aim a wide band beam of neutrinos of sufficient intensity and appropriate energy toward DUNE detectors, placed 4850 feet underground at SURF in South Dakota, about 1,300 km away. The primary proton beam (60-120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos are produced after the protons hit a four-interaction length solid target and produce mesons which are subsequently focused by a set of three magnetic horns into a 194 m long helium filled decay pipe where they decay into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spatial and radiological constraints, extensive simulations and the experience gained by operating the NuMI facility at Fermilab. The Beamline facility is designed for initial operation at a proton-beam power of 1.2 MW, with the capability to support an upgrade to about 2.4 MW. LBNF/DUNE obtained CD-1 approval in November 2015 and CD-3a approval in September 2016. We discuss here the Beamline design status and the associated challenges. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF075 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUZGBE2 | Final-focus Superconducting Magnets for SuperKEKB | 1215 |
|
||
The SuperKEKB collider aims at 40 times higher luminosity than that achieved at KEKB, based on the nano-beam scheme. The vertical beta function at the interaction point will be squeezed to 300μmeter. Final-focus superconducting magnet system which consists of eight main quadrupole magnets, 43 corrector windings, and compensation solenoids is a key component to achieve high luminosity. This invited talk presents the construction and commissioning of the final-focus magnet system. | ||
![]() |
Slides TUZGBE2 [4.235 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUZGBE2 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |